Advertisement

Assisted Hybrid Machining Processes

Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The growing trend of miniaturization of products and rapid development in precision engineering demand higher machining quality of micro-holes, micro-grooves and complicated 3D micro-structures in parts of especially difficult-to-machine materials. Assisted-type HMPs were developed specifically to overcome the limitations of advanced machining processes and to improve the machining quality and productivity. Assisted-type HMPs are another important category of HMPs whereby assistance of an external source is used to overcome the limitations of the primary material removal process to facilitate efficient and effective machining. This chapter discusses working principles, process mechanisms and typical applications of some important vibration, heat, abrasive and magnetic field-assisted hybrid machining processes.

Keywords

Vibration Laser Abrasive Assisted HMP Flushing efficiency Electrochemical dissolution Micro-machining 

References

  1. 1.
    Colwell L (1956) The effects of high-frequency vibrations in grinding. Trans ASME 78:837Google Scholar
  2. 2.
    Isaev A, Anokhin V (1961) Ultrasonic vibration of a metal cutting tool. Vest Mashinos (in Russian)Google Scholar
  3. 3.
    Skoczypiec S (2011) Research on ultrasonically assisted electrochemical machining process. Int J Adv Manuf Technol 52(5):565–574CrossRefGoogle Scholar
  4. 4.
    Ruszaj A, Zybura M, úrek R, Skrabalak G (2003) Some aspects of the electrochemical machining process supported by electrode ultrasonic vibration optimization. J Eng Manuf 217:1365–1371CrossRefGoogle Scholar
  5. 5.
    Skoczypiec S, Ruszaj A (2007) Application of ultrasonic vibration to improve technological factors in electrochemical machining of titanium alloys. In: Proceedings of international symposium on electrochemical machining technology INSECT 2007 (Scripts precision and micro production engineering), vol 1. Cheminitz University of Technology, pp 143–148Google Scholar
  6. 6.
    Pa PS (2007) Electrode form design of large holes of die material in ultrasonic electrochemical finishing. J Mater Process Technol 470–477Google Scholar
  7. 7.
    Ghoshal B, Bhattacharyya B (2013) Influence of vibration on micro-tool fabrication by electrochemical machining. Int J Mach Tool Manuf 64:49–59CrossRefGoogle Scholar
  8. 8.
    Endo T, Tsujimoto T, Mitsui K (2008) Study of vibration-assisted micro-EDM–the effect of vibration on machining time and stability of discharge. Precis Eng 32:269–277CrossRefGoogle Scholar
  9. 9.
    Chavoshi SZ, Luo X (2015) Hybrid micro-machining processes: a review. Precis Eng 41:1–23CrossRefGoogle Scholar
  10. 10.
    Kumar MN, Subbu SK, Krishna PV, Venugopal A (2014) Vibration assisted conventional and advanced machining: a review. Procedia Eng 97:1577–1586CrossRefGoogle Scholar
  11. 11.
    Abdullah A, Shabgard M, Ivanov A, Shervanyi M (2008) Effect of ultrasonic- assisted EDM on the surface integrity of cemented tungsten carbide (WCCo). Int J Adv Manuf Technol 41:268–280CrossRefGoogle Scholar
  12. 12.
    Abdullah A, Shabgard M (2008) Effect of ultrasonic vibration of tool on electrical discharge machining of cemented tungsten carbide (WC-Co). Int J Adv Manuf Technol 38:1137–1147CrossRefGoogle Scholar
  13. 13.
    Wansheng Z, Zhenlong W, Shichun D, Guanxin C, Hongyu W (2002) Ultrasonic and electric discharge machining to deep and small hole on titanium alloy. J Mater Process Technol 120(1–3):101–106CrossRefGoogle Scholar
  14. 14.
    Uhlmann E, Domingos DC (2013) Investigations on vibration-assisted EDM-machining of seal slots in high-temperature resistant materials for turbine components. Procedia CIRP 6:71–76CrossRefGoogle Scholar
  15. 15.
    Rajurkar KP, Kozak J (2001) Laser assisted electrochemical machining. Trans NAMRI 29:421–427Google Scholar
  16. 16.
    Pajak PT, Desilva AKM, Harrison DK, Mcgeough JA (2006) Precision and efficiency of laser assisted jet electrochemical machining. Precis Eng 30:288–298CrossRefGoogle Scholar
  17. 17.
    Desilva AKM, Pajak PT, Mcgeough JA, Harrison DK (2011) Thermal effects in laser assisted jet electrochemical machining. Ann CIRP 60:243–246CrossRefGoogle Scholar
  18. 18.
    Zhang H, Xu J (2010) Modelling and experimental investigation of laser drilling with jet electrochemical machining. Chin J Aero 23:454–460CrossRefGoogle Scholar
  19. 19.
    Kuo CL, Huang JD, Liang HY (2003) Fabrication of 3D metal microstructures using a hybrid process of micro-EDM and laser assembly. Int J Adv Manuf Technol 21:796–800CrossRefGoogle Scholar
  20. 20.
    Kim S, Kim BH, Chung DK, Shin HS, Chu CN (2010) Hybrid micromachining using a nano second pulsed laser and micro EDM. J Micromech Microeng 20:015037–015038CrossRefGoogle Scholar
  21. 21.
    Li L, Diver C, Atkinson J, Wagner RG, Helml HJ (2006) Sequential laser and EDM micro-drilling for next generation fuel injection nozzle manufacture. Ann CIRP 55:179–182CrossRefGoogle Scholar
  22. 22.
    Takhata K, Aoki S, Sato T (1996) Fine surface finishing method for 3-D microstructures. In: Proceedings of MEMS 96, pp 73–78Google Scholar
  23. 23.
    Zhu D, Zeng YB, Xu ZY, Zhang XY (2011) Precision machining of small holes by the hybrid process of electrochemical removal and grinding. Ann CIRP 60:247–250CrossRefGoogle Scholar
  24. 24.
    Kozak J, Skrabalak G (2014) Analysis of abrasive electrochemical grinding process (AECG). In: Proceedings of the world congress on engineering 2014 Vol II, WCE 2014, London, UK, 2–4 July 2014Google Scholar
  25. 25.
    Lin YC, Chen YF, Wang AC, Sei WL (2012) Machining performance on hybrid process of abrasive jet machining and electrical discharge machining. Trans Met Soc China 22:775–780CrossRefGoogle Scholar
  26. 26.
    Shufeng S, Shiming JI, Depeng T, Wei X, Xin W (2012) Abrasive assisted EDM and ECM compound machining. J Mech Eng 17:159–164Google Scholar
  27. 27.
    Lin YC, Lee HS (2008) Machining characteristics of magnetic force-assisted EDM. Int J Mach Tool Manuf 48:1179–1186CrossRefGoogle Scholar
  28. 28.
    Jahan MP (2013) Micro-electrical discharge machining. In: Davim JP (ed) Nontraditional machining processes: research advances. Springer, London, pp 111–152CrossRefGoogle Scholar
  29. 29.
    Yeo SH, Murali M, Cheah HT (2004) Magnetic field assisted micro electro-discharge machining. J Micromech Microeng 14:1526–1529CrossRefGoogle Scholar
  30. 30.
    Jain VK (2013) Micromanufacturing processes. Taylor and Francis LLC, FloridaGoogle Scholar
  31. 31.
    Rhoades LJ (1988) Abrasive flow machining. Manuf Eng 75–78Google Scholar
  32. 32.
    Jain VK (2009) Magnetic field assisted abrasive based micro-/nano-finishing. J Mater Process Technol 209:6022–6038CrossRefGoogle Scholar
  33. 33.
    Singh DK, Jain VK, Raghuram V (2005) On the performance analysis of flexible magnetic abrasive brush. Mach Sci Technol 9:601–619CrossRefGoogle Scholar
  34. 34.
    Jain VK, Kumar P, Behera PK, Jayswal SC (2001) Effect of working gap and circumferential speed on the performance of abrasive finishing process. Wear 250:384–390CrossRefGoogle Scholar
  35. 35.
    Komanduri R (1996) On material removal mechanisms in finishing of advanced ceramics and glasses. Ann CIRP 45(1):509–514CrossRefGoogle Scholar
  36. 36.
    Kim JD (1997) Development of a magnetic abrasive jet machining system for internal polishing of circular tubes. J Mater Process Technol 71:384–393CrossRefGoogle Scholar
  37. 37.
    Madarkar R, Jain VK (2007) Investigations into magnetic abrasive microdeburring (MAMDe). In: Anil B, Radhakrishnan V, Sunilkumar K (eds) Proceedings of the conference COPEN. Allied Publishers, New Delhi, pp 307–312Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.School of Mechanical and Industrial EngineeringUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Discipline of Mechanical EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations