Advertisement

Thermal Hybrid Machining Processes

Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter describes thermal-type HMPs in which EDM as the primary process of material removal is combined with either a conventional machining/finishing process or with an electrolytic dissolution-based process for improved machining/finishing characteristics and workpiece surface integrity. This hybridization enables thermal HMPs to reduce processing times by 2 to 3 times when compared to their constituent processes while producing surface finishes up to 0.1 µm. Some of the important applications of thermal HMPs are as follows: drilling of micro-holes and the production of slits in quartz and glass, machining of metal matrix composites and ceramics, and dressing of grinding wheels.

Keywords

Abrasion Diamond Discharge EDM Electrochemical Electrolysis Gas film Grinding Pyrex 

References

  1. 1.
    Abothula BC, Yadav V, Singh GK (2010) Development and experimental study of electro-discharge face grinding. Mater Manuf Process 6:482–487CrossRefGoogle Scholar
  2. 2.
    Yadav RN, Yadav V (2012) Electrical discharge grinding (EDG): a review. Paper presented at the national conference on trends and advances in mechanical engineering, YMCA University of Science & Technology, Faridabad, 19–20 October 2012Google Scholar
  3. 3.
    Jain VK (2002) Advanced machining processes. Allied Publishers Pvt. Ltd., New DelhiGoogle Scholar
  4. 4.
    Rajurkar KP, Wei B, Kozak J, Nooka SR (1995) Abrasive electro-discharge grinding of advanced materials. In: Proceeding of the 11th international symposium of electro-machining (ISEM-11), Lausanne, pp 863–870Google Scholar
  5. 5.
    Kozak J (2002) Abrasive electro discharge grinding (AEDG) of advanced materials. Arch Civil Mech Eng 2:83–101Google Scholar
  6. 6.
    Aoyama T, Inasaki I (1986) Hybrid machining-combination of electrical discharge machining and grinding. In: Proceeding of the 14th North American manufacturing and research conference, SME, pp 654–661Google Scholar
  7. 7.
    Koshy P, Jain VK, Lal GK (1996) Mechanism of material in electrical discharge diamond grinding. Int J Mach Tool Manuf 36(10):1173–1185CrossRefGoogle Scholar
  8. 8.
    Singh GK, Yadava V, Kumar R (2010) Diamond face grinding of WC-Co composite with spark assistance: experimental study and parameter optimization. Int J Precis Eng Man 11:509–518CrossRefGoogle Scholar
  9. 9.
    Wuthrich R, Fascio V (2005) Machining of non-conducting materials using electrochemical discharge phenomena—an overview. Int J Mach Tool Manuf 45:1095–1108CrossRefGoogle Scholar
  10. 10.
    Bhattacharyya B, Doloi BN, Sorkhel SK (1999) Experimental investigations into electro chemical discharge machining (ECDM) of non-conductive ceramic materials. J Mater Process Techol 95:145–154CrossRefGoogle Scholar
  11. 11.
    Wuthrich R, Hof LA (2006) The gas film in spark assisted chemical engraving (SACE)-a key element for micromachining applications. Int J Mach Tool Manuf 46:828–835CrossRefGoogle Scholar
  12. 12.
    Kulkarni AV (2012) Electrochemical spark micromachining processes. In: Kahrizi M (ed) Micromachining techniques for fabrication of micro and nano structures, 1st edn. InTech, Shanghai, pp 235–251Google Scholar
  13. 13.
    Tsuchiya H, Inoue T, Miyazaiki M (1985) Wire electrochemical discharge machining of glass and ceramics. Bull Jpn Soc Precis Eng 19(1):73–74Google Scholar
  14. 14.
    Wuthrich R, Ziki JDA (2015) Micromachining using electrochemical discharge phenomenon. Elsevier, OxfordGoogle Scholar
  15. 15.
    Kuo KY, W KL, Yang CK, Yan BH (2015) Effect of adding SiC powder on surface quality of quartz glass micro-slit machined by WECDM. Int J Adv Manuf Technol 78:73–83CrossRefGoogle Scholar
  16. 16.
    Doloi B, Bhattacharyya B, Sorkhel SK (1999) Electrochemical discharge machining of non-conducting ceramics. Def Sci J 49(9):331–338CrossRefGoogle Scholar
  17. 17.
    Jain VK, Choudhury SK, Ramesh KM (2002) On the machining of alumina and glass. Int J Mach Tool Manuf 42:1269–1276CrossRefGoogle Scholar
  18. 18.
    Chak SK, Rao V (2007) Trepanning of Al2O3 by electro-chemical discharge machining (ECDM) process using abrasive electrode with pulsed DC supply. Int J Mach Tool Manuf 47:2061–2070CrossRefGoogle Scholar
  19. 19.
    Jui SK, Kamaraj AB, Sundaram MM (2013) High aspect ratio micromachining of glass by electrochemical discharge machining (ECDM). J Manuf Proc 15:460–466CrossRefGoogle Scholar
  20. 20.
    Zheng ZP, Cheng WH, Huang FY, Yan BH (2007) 3D micro-structuring of pyrex glass using the electrochemical discharge machining process. J Micromech Microeng 17:960CrossRefGoogle Scholar
  21. 21.
    Cao XD, Kim BH, Chu CN (2009) Micro-structuring of glass with features less than 100 µm by electrochemical discharge machining. Precis Eng 33:459–465CrossRefGoogle Scholar
  22. 22.
    Peng WY, Liao YS (2004) Study of electrochemical discharge machining technology for slicing on-conductive brittle materials. J Mater Process Techol 149:363–369CrossRefGoogle Scholar
  23. 23.
    Kuo KY, W KL, Yang CK, Yan BH (2013) Wire electro chemical discharge machining (WECDM) of quartz glass with titrated electrolyte flow. Int J Mach Tool Manuf 72:50–57CrossRefGoogle Scholar
  24. 24.
    Benedict GF (1987) Nontraditional manufacturing processes. Marcel Dekker Inc., New YorkGoogle Scholar
  25. 25.
    Wei C, Hu D, Xu K, Ni J (2011) Electrochemical discharge dressing of metal bond micro-grinding tools. Int J Mach Tool Manuf 51(2):165–168CrossRefGoogle Scholar
  26. 26.
    Liu JW, Yue TM, Guo ZN (2013) Grinding aided electrochemical discharge machining of particulate reinforced metal matrix composites. Int J Adv Manuf Technol 68:2349–2357CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.School of Mechanical and Industrial EngineeringUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Discipline of Mechanical EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations