Advertisement

Decision Support in the Field of Online Marketing - Development of a Data Landscape

  • Thomas HansmannEmail author
  • Florian Nottorf
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 554)

Abstract

The relevance of decision support and the related potential has increased in the past years fostered by the rising number of data sources available inside and outside companies and total data points. The available data sources, especially company-external differ in their explanatory power and the effort needed to extract and process the data. To structure the available data and enhance the decision support process, we develop a construction model based on the principles of design science research for the development of a data landscape, which enables the definition of goal-oriented research questions and the identification of related available data in- and outside of the company. The framework is empirically tested in the field online advertising. The application reveals the landscapes contribution to the decision making which leads to economic valuable results.

Keywords

Online marketing Data landscape Decision support 

References

  1. 1.
    Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  2. 2.
    Braun, M., Moe, W.W.: Online display advertising: modeling the effects of multiple creatives and individual impression histories. Market. Sci. 32(5), 753–767 (2013)CrossRefGoogle Scholar
  3. 3.
    Bucher, T., Riege, C., Saat, J.: Evaluation in der gestaltungsorientierten Wirtschaftsinformatik - Systematisierung nach Erkenntnisziel und Gestaltungsziel. Technical report, Westflische Wilhelms-Universitt Mnster (2008)Google Scholar
  4. 4.
    Bucklin, R.E., Sismeiro, C.: A model of web site browsing behavior estimated on clickstream data. J. Market. Res. 40(3), 249–267 (2003)CrossRefGoogle Scholar
  5. 5.
    Byrd, T., Cossick, K., Zmud, R.: A synthesis of research on requirements analysis and knowledge acquisition techniques. MIS Q. 16(1), 117–138 (1992)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, P., Hoffman, D.L., Novak, T.P.: Modeling the clickstream: implications for web-based advertising efforts. Market. Sci. 22(4), 520–541 (2003)CrossRefGoogle Scholar
  7. 7.
    Chaudhuri, S., Dayal, U., Ganti, V.: Database technology for decision support systems. Computer 34(12), 48–55 (2001)CrossRefGoogle Scholar
  8. 8.
    Cho, C.-H.: Factors influencing clicking of banner ads on the WWW. CyberPsychology Behav. 6(2), 201–215 (2003)CrossRefGoogle Scholar
  9. 9.
    Clarke, A.: Evaluation Research: An Introduction to Principles, Methods and Practice. Sage Publications, London (1999)Google Scholar
  10. 10.
    Cleven, A., Gubler, P., Hüner, K.M.: Design alternatives for the evaluation of design science research artifacts. In: Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology, pp. 19:1–19:8 (2009)Google Scholar
  11. 11.
    Danaher, P.J., Mullarkey, G.: Factors affecting online advertising recall: a study of students. J. Advertising Res. 43(3), 252–267 (2003)CrossRefGoogle Scholar
  12. 12.
    Davis, G.B.: Strategies for information requirements determination. IBM Syst. J. 21(1), 4–30 (1982)CrossRefGoogle Scholar
  13. 13.
    Forcada, M.L., Ginestí-Rosell, M., Nordfalk, J., ORegan, J., Ortiz-Rojas, S., Pérez-Ortiz, J.A., Sánchez-Martínez, F., Ramírez-Sánchez, G., Tyers, F.M.: Apertium: a free/open-source platform for rule-based machine translation. Mach. Trans. 25(2), 127–144 (2011)CrossRefGoogle Scholar
  14. 14.
    Gardner, S.R.: Building the data warehouse. Commun. ACM 41(9), 52–60 (1998)CrossRefGoogle Scholar
  15. 15.
    Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data warehouse design. In: Proceedings of the 8th ACM International Workshop on Data Warehousing and OLAP - DOLAP, p. 47 (2005)Google Scholar
  16. 16.
    Hansmann, T., Niemeyer, P.: Big data - characterizing an emerging research field using topic models. In: Proceedings of the IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), pp. 43–51 (2014)Google Scholar
  17. 17.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information system research. MIS Q. 28(1), 75–105 (2004)Google Scholar
  18. 18.
    Hilbert, M., López, P.: The world’s technological capacity to store, communicate, and compute information. Science (New York, NY) 332(60), 60–65 (2011)CrossRefGoogle Scholar
  19. 19.
    Inmon, W.H.: Building the Data Warehouse, 4th edn. Wiley, Indianapolis (2005)Google Scholar
  20. 20.
    Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques. Wiley, New York (1998)Google Scholar
  21. 21.
    LaValle, S., Lesser, E., Shockley, R.: Big data, analytics and the path from insights to value. MIT Sloan Manag. Rev. 52(2), 21–31 (2011)Google Scholar
  22. 22.
    List, B., Schiefer, J., Tjoa, A.M.: Process-oriented requirement analysis supporting the data warehouse design process - a use case driven approach. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 593–603. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  23. 23.
    Madnick, S.E., Wang, R.Y., Lee, Y.W., Zhu, H.: Overview and framework for data and information quality research. ACM J. Data Inf. Qual. 1(1), 1–22 (2009)Google Scholar
  24. 24.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: the next frontier for innovation, competition, and productivity. Technical report June, McKinsey Global Institute (2011)Google Scholar
  25. 25.
    Mazón, J., Pardillo, J., Trujillo, J.: A model-driven goal-oriented requirement engineering approach for data warehouses. Advances in Conceptual Modeling Foundations and Applications, pp. 255–264. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Moody, D.L., Kortink, M.A.R.: From enterprise models to dimensional models: a methodology for data warehouse and data mart design objectives of dimensional modelling. In: 2nd DMWD, vol. 2000 (2000)Google Scholar
  27. 27.
    Morrison, D.G.: On the interpretation of discriminant analysis. J. Market. Res. 6(2), 156–163 (1969)CrossRefGoogle Scholar
  28. 28.
    Mudambi, S., Schuff, D.: What makes a helpful online review? a study of customer reviews on Amazon.com. MIS Q. 34(1), 185–200 (2010)Google Scholar
  29. 29.
    Nottorf, F.: Modeling the clickstream across multiple online advertising channels using a binary logit with bayesian mixture of normals. Electron. Commer. Res. Appl. (Art. Adv.) 13(1), 45–55 (2013)CrossRefGoogle Scholar
  30. 30.
    Nottorf, F., Funk, B.: The economic value of clickstream data from an advertiser’s perspective (2013)Google Scholar
  31. 31.
    Rossi, P.E., Allenby, G.M., McCulloch, R.E.: Bayesian statistics and marketing. Wiley, Hoboken (2005)zbMATHCrossRefGoogle Scholar
  32. 32.
    Rutz, O.J., Bucklin, R.E.: From generic to branded: a model of spillover in paid search advertising. J. Market. Res. 48(1), 87–102 (2011)CrossRefGoogle Scholar
  33. 33.
    Rutz, O.J., Bucklin, R.E.: Does banner advertising affect browsing for brands? clickstream choice model says yes, for some. Quant. Market. Econ. 10(2), 231–257 (2011)CrossRefGoogle Scholar
  34. 34.
    Stonebraker, M., Robertson, J.: Big data is ‘buzzword du jour;’ CS academics ‘have the best job’. Commun. ACM 56(9), 10 (2013)CrossRefGoogle Scholar
  35. 35.
    Stroh, F., Winter, R., Wortmann, F.: Method support of information requirements analysis for analytical information systems. Bus. Inf. Syst. Eng. 3(1), 33–43 (2011)CrossRefGoogle Scholar
  36. 36.
    Winter, R., Strauch, B.: A method for demand-driven information requirements analysis in data warehousing projects. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, Number Sect. 2 (2003)Google Scholar
  37. 37.
    Winter, R., Strauch, B.: Information requirements engineering for data warehouse systems. In: Proceedings of the 2004 ACM Symposium on Applied computing - SAC 2004. ACM Press, New York (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Leuphana University LüneburgLüneburgGermany
  2. 2.Adference GmbHLüneburgGermany

Personalised recommendations