Skip to main content

Real-Time Edge-Sensitive Local Stereo Matching with Iterative Disparity Refinement

  • Conference paper
  • First Online:
E-Business and Telecommunications (ICETE 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 554))

Included in the following conference series:

Abstract

First, we present a novel cost aggregation method for stereo matching that uses two edge-sensitive shape-adaptive support windows per pixel region; one following the horizontal edges in the image, the other the vertical edges. Their combination defines the final aggregation window shape that closely follows all object edges and thereby achieves increased hypothesis confidence. Second, we present a novel iterative disparity refinement process and apply it to the initially estimated disparity map. The process consists of four rigorously defined and lightweight modules that can be iterated multiple times: a disparity cross check, bitwise fast voting, invalid disparity handling, and median filtering. We demonstrate that our iterative refinement has a large effect on the overall quality, resulting in smooth disparity maps with sharp object edges, especially around occluded areas. It can be applied to any stereo matching algorithm and tends to converge to a final solution. Finally, we perform a quantitative evaluation on various Middlebury datasets, showing an increase in quality of over several dB PSNR compared with their ground truth. Our whole disparity estimation algorithm supports efficient GPU implementation to facilitate scalability and real-time performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  2. Dumont, M., Goorts, P., Maesen, S., Degraen, D., Bekaert, P., Lafruit, G.: Iterative refinement for real-time local stereo matching. In: Proceedings of 3D Stereo Media, Liege, Belgium, pp. 1–8 (2014)

    Google Scholar 

  3. Zhang, K., Lu, J., Lafruit, G.: Cross-based local stereo matching using orthogonal integral images. IEEE Trans. Circuits Syst. Video Technol. 19, 1073–1079 (2009)

    Article  Google Scholar 

  4. Dumont, M., Goorts, P., Maesen, S., Bekaert, P., Lafruit, G.: Real-time local stereo matching using edge sensitive adaptive windows. In: Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications (SIGMAP 2014), pp. 117–126 (2014)

    Google Scholar 

  5. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003), vol. 1, IEEE, pp. 195–202 (2003)

    Google Scholar 

  6. Ryoo, S., Rodrigues, C., Baghsorkhi, S., Stone, S., Kirk, D., Hwu, W. M.: Optimization principles and application performance evaluation of a multithreaded GPU using CUDA. In: Proceedings of ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 73–82 (2008)

    Google Scholar 

  7. Goorts, P., Rogmans, S., Eynde, S. V., Bekaert, P.: Practical examples of gpu computing optimization principles. In: Proceedings of International Conference on Signal Processing and Multimedia Applications, Athens, Greece, pp. 46–49 (2010)

    Google Scholar 

  8. Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics hardware. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 211–220. IEEE Computer Society, Madison (2003)

    Google Scholar 

  9. Veksler, O.: Fast variable window for stereo correspondence using integral images. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, vol. 1, pp. 556–561 (2003)

    Google Scholar 

  10. Hirschmüller, H., Innocent, P.R., Garibaldi, J.: Real-time correlation-based stereo vision with reduced border errors. Int. J. Comput. Vision 47, 229–246 (2002)

    Article  MATH  Google Scholar 

  11. Yang, R., Pollefeys, M., Li, S.: Improved real-time stereo on commodity graphics hardware. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition Workshop, pp. 36–36 (2004)

    Google Scholar 

  12. Lu, J., Rogmans, S., Lafruit, G., Catthoor, F.: Stream-centric stereo matching and view synthesis: a high-speed image-based rendering paradigm on gpus, signal processing: image communication. Trans. Circuit Syst. Video Technol. 19(11), 1598–1611 (2009)

    Article  Google Scholar 

  13. Gerrits, M., Bekaert, P.: Local stereo matching with segmentation-based outlier rejection. In: The 3rd Canadian Conference on Computer and Robot Vision, 2006, IEEE, pp. 66–66 (2006)

    Google Scholar 

  14. Wang, Z.F., Zheng, Z.G.: A region based stereo matching algorithm using cooperative optimization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 1–8 (2008)

    Google Scholar 

  15. Gong, M., Yang, R.: Image-gradient-guided real-time stereo on graphics hardware. In: Fifth International Conference on 3-D Digital Imaging and Modeling, 2005, 3DIM 2005, pp. 548–555 (2005)

    Google Scholar 

  16. Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern Anal. Mach. Intell. 28, 650–656 (2006)

    Article  Google Scholar 

  17. Rhemann, C., Hosni, A., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 3017–3024 (2011)

    Google Scholar 

  18. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proceedings, of the Eighth IEEE International Conference on Computer Vision, 2001, ICCV 2001, vol. 2, IEEE 508–515 (2001)

    Google Scholar 

  19. Sun, J., Zheng, N.N., Shum, H.Y.: Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. 25, 787–800 (2003)

    Article  Google Scholar 

  20. Yang, Q., Wang, L., Yang, R., Stewenius, H., Nister, D.: Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Trans. Pattern Anal. Mach. Intell. 31, 492–504 (2009)

    Article  Google Scholar 

  21. Wang, L., Liao, M., Gong, M., Yang, R., Nister, D.: High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In: Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), 3DPVT 2006, pp. 798–805. IEEE Computer Society, Washington (2006)

    Google Scholar 

  22. Zitnick, C., Kang, S.: Stereo for image-based rendering using image over-segmentation. Int. J. Comput. Vis. 75, 49–65 (2007)

    Article  Google Scholar 

  23. Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: a unifying framework for depth from triangulation. IEEE Trans. Pattern Anal. Mach. Intell. 27, 296–302 (2005)

    Article  Google Scholar 

  24. Zhang, K., Lu, J., Lafruit, G., Lauwereins, R., Van Gool, L.: Real-time accurate stereo with bitwise fast voting on cuda. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), IEEE, pp. 794–800 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Goorts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dumont, M., Goorts, P., Maesen, S., Lafruit, G., Bekaert, P. (2015). Real-Time Edge-Sensitive Local Stereo Matching with Iterative Disparity Refinement. In: Obaidat, M., Holzinger, A., Filipe, J. (eds) E-Business and Telecommunications. ICETE 2014. Communications in Computer and Information Science, vol 554. Springer, Cham. https://doi.org/10.1007/978-3-319-25915-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25915-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25914-7

  • Online ISBN: 978-3-319-25915-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics