Skip to main content

Improving Kinect-Skeleton Estimation

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9386))

Abstract

Capturing human movement activities through various sensor technologies is becoming more and more important in entertainment, film industry, military, healthcare or sports. The Microsoft Kinect is an example of low-cost capturing technology that enables to digitize human movement into a 3D motion representation. However, the accuracy of this representation is often underestimated which results in decreasing effectiveness of Kinect applications. In this paper, we propose advanced post-processing methods to improve the accuracy of the Kinect skeleton estimation. By evaluating these methods on real-life data we decrease the error in accuracy of measured lengths of bones more than two times.

P. Zezula—Supported by the Czech Science Foundation project No. P103/12/G084.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amon, C., Fuhrmann, F.: Evaluation of the spatial resolution accuracy of the face tracking system for kinect for windows v1 and v2. In: Congress of Alps-Adria Acoustics Assosiation, pp. 9–12 (2014)

    Google Scholar 

  2. Baumann, J., Wessel, R., Krüger, B., Weber, A.: Action graph: a versatile data structure for action recognition. In: International Conference on Computer Graphics Theory and Applications (GRAPP 2014). SCITEPRESS (2014)

    Google Scholar 

  3. Bian, Z.P., Chau, L.P., Magnenat-Thalmann, N.: Fall detection based on skeleton extraction. In: International Conference on Virtual-Reality Continuum and its Applications in Industry (VRCAI 2012), pp. 91–94. ACM, USA (2012)

    Google Scholar 

  4. Chang, C.Y., Lange, B., Zhang, M., Koenig, S., Requejo, P., Somboon, N., Sawchuk, A., Rizzo, A.: Towards pervasive physical rehabilitation using microsoft kinect. In: 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth 2012), pp. 159–162 (2012)

    Google Scholar 

  5. Cosgun, A., Bünger, M., Christensen, H.I.: Accuracy Analysis of Skeleton Trackers for Safety in HRI. Tech. rep, Georgia Tech, Atlanta, GA, USA (2013)

    Google Scholar 

  6. Farhadi-Niaki, F., GhasemAghaei, R., Arya, A.: Empirical study of a vision-based depth-sensitive human-computer interaction system. In: 10th Asia Pacific Conference on Computer Human Interaction (APCHI 2012), pp. 101–108. ACM (2012)

    Google Scholar 

  7. Fernandez-Baena, A., Susin, A., Lligadas, X.: Biomechanical validation of upper-body and lower-body joint movements of kinect motion capture data for rehabilitation treatments. In: 4th Int. Conf. on Intelligent Networking and Collaborative Systems (INCoS 2012), pp. 656–661. IEEE Comp. Soc. (2012)

    Google Scholar 

  8. Khoshelham, K., Elberink, S.O.: Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications. Sensors 12(2), 1437–1454 (2012)

    Article  Google Scholar 

  9. Liang, Y., Lu, W., Liang, W., Wang, Y.: Action recognition using local joints structure and histograms of 3D joints. In: Computational Intelligence and Security (CIS), pp. 185–188 (2014)

    Google Scholar 

  10. Lun, R., Zhao, W.: A Survey of Applications and Human Motion Recognition with Microsoft Kinect. Int. Journal of Pattern Rec. and Artificial Intelligence (2015)

    Google Scholar 

  11. Milovanovic, M., Minovic, M., Starcevic, D.: Walking in colors: human gait recognition using kinect and CBIR. IEEE MultiMedia 20(4), 28–36 (2013)

    Article  Google Scholar 

  12. Ni, B., Dat, N.C., Moulin, P.: RGBD-camera based get-up event detection for hospital fall prevention. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP 2012), pp. 1405–1408 (2012)

    Google Scholar 

  13. Obdržálek, S., Kurillo, G., Ofli, F., Bajcsy, R., Seto, E., Jimison, H., Pavel, M.: Accuracy and robustness of kinect pose estimation in the context of coaching of elderly population. In: Engineering in Medicine and Biology Society (EMBC 2012), pp. 1188–1193. IEEE Computer Society (2012)

    Google Scholar 

  14. Park, J.P., Lee, K.H., Lee, J.: Finding Syntactic Structures from Human Motion Data. Computer Graphics Forum 30(8), 2183–2193 (2011)

    Article  Google Scholar 

  15. Preis, J., Kessel, M., Werner, M., Linnhoff-Popien, C.: Gait recognition with kinect. In: 1st International Workshop on Kinect in Pervasive Computing (2012)

    Google Scholar 

  16. Raj, M., Creem-Regehr, S.H., Rand, K.M., Stefanucci, J.K., Thompson, W.B.: Kinect based 3d object manipulation on a desktop display. In: ACM Symposium on Applied Perception (SAP 2012), pp. 99–102. ACM, New York (2012)

    Google Scholar 

  17. Sedmidubsky, J., Valcik, J., Balazia, M., Zezula, P.: Gait recognition based on normalized walk cycles. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., et al. (eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 11–20. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Valcik, J., Sedmidubsky, J., Balazia, M., Zezula, P.: Identifying walk cycles for human recognition. In: Chau, M., Wang, G.A., Yue, W.T., Chen, H. (eds.) PAISI 2012. LNCS, vol. 7299, pp. 127–135. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Xu, D., Chen, Y.L., Lin, C., Kong, X., Wu, X.: Real-time dynamic gesture recognition system based on depth perception for robot navigation. In: International Conference on Robotics and Biomimetics (ROBIO 2012), pp. 689–694 (2012)

    Google Scholar 

  20. Zhao, W., Lun, R., Espy, D., Reinthal, M.: Rule based realtime motion assessment for rehabilitation exercises. In: IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE 2014), pp. 133–140 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Zezula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Valcik, J., Sedmidubsky, J., Zezula, P. (2015). Improving Kinect-Skeleton Estimation. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25903-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25902-4

  • Online ISBN: 978-3-319-25903-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics