Abstract
We present a new motion estimation algorithm that uses cosine-sine modulated filter banks to form complex modulated filter banks. The motion estimation is based on phase differences between a template and the reference image. By using a non-downsampled version of the cosine-sine modulated filter bank, our algorithm is able to shift the template image over the reference image in the transform domain by only changing the phases of the template image based on a given motion field. We also show that we can correct small non-rigid motions by directly using the phase difference between the reference and the template images in the transform domain. We also include a first application in magnetic resonance imaging, where the Fourier space is corrupted by motion and we use the phase difference method to correct small motion. This indicates the magnitude invariance for small motions.
Keywords
- Motion estimation
- Motion correction
- Motion invariance
- Cosine-sine modulated filter banks
- Motion mri
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Austvoll, I.: A study of the yosemite sequence used as a test sequence for estimation of optical flow. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 659–668. Springer, Heidelberg (2005)
Bayram, I., Selesnick, I.W.: On the dual-tree complex wavelet packet and m -band transforms. IEEE Transactions on Signal Processing 56(6), 2298–2310 (2008)
Chaux, C., Duval, L., Pesquet, J.C.: Image analysis using a dual-tree m-band wavelet transform. IEEE Transactions on Image Processing 15(8), 2397–2412 (2006)
Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. International Journal of Computer Vision 5(1), 77–104 (1990)
Goldstein, T., Osher, S.: The split bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences 2(2), 323–343 (2009)
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17(1–3), 185–203 (1981)
Kyochi, S., Suzuki, T., Tanaka, Y.: A directional and shift-invariant transform based on m-channel rational-valued cosine-sine modulated filter banks. In: Proc. Asia-Pacific Signal Information Processing Association Annual Summit and Conference, Hollywood, California, pp. 1–4, December 2012
Kyochi, S., Uto, T., Ikehara, M.: Dual-tree complex wavelet transform arising from cosine-sine modulated filter banks. In: Proc. IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, pp. 2189–2192, May 2009
Lu, J., Liou, M.L.: A simple and efficient search algorithm for block-matching motion estimation. IEEE Transactions on Circuits and Systems for Video Technology 7(2), 429–433 (1997)
Maaß, M., Phan, H., Mertins, A.: Design of cosine-sine modulated filter banks without dc leakage. In: Proc. International Conference on Digital Signal Processing, Hong Kong, China, pp. 486–491, August 2014
Magarey, J., Kingsbury, N.G.: Motion estimation using a complex-valued wavelet transform. IEEE Transactions on Signal Processing 46(4), 1069–1084 (1998)
Möller, A., Maaß, M., Mertins, A.: Blind sparse motion MRI with linear subpixel interpolation. In: Handels, H., Deserno, T.M., Meinzer, H.P., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2015. Informatik aktuell, pp. 510–515. Springer, Heidelberg (2015)
Mota, C., Stuke, I., Aach, T., Barth, E.: Divide-and-conquer strategies for estimating multiple transparent motions. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 66–77. Springer, Heidelberg (2007)
Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Processing Magazine 22(6), 123–151 (2005)
Torr, P.H.S., Zisserman, A.: Feature based methods for structure and motion estimation. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 278–294. Springer, Heidelberg (2000)
Viholainen, A., Alhava, J., Renfors, M.: Implementation of parallel cosine and sine modulated filter banks for equalized transmultiplexer systems. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 6, Salt Lake City, Utah, pp. 3625–3628, May 2001
Viholainen, A., Stitz, T.H., Alhava, J., Ihalainen, T., Renfors, M.: Complex modulated critically sampled filter banks based on cosine and sine modulation. In: Proc. IEEE International Symposium on Circuits and Systems, vol. 1, Scottsdale, Arizona, pp. I-833–I-836, May 2002
Yang, Z., Zhang, C., Xie, L.: Sparse MRI for motion correction. In: Proc. IEEE International Symposium on Biomedical Imaging, San Francisco, California, pp. 962–965, April 2013
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Maass, M., Phan, H., Möller, A., Mertins, A. (2015). Cosine-Sine Modulated Filter Banks for Motion Estimation and Correction. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-25903-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25902-4
Online ISBN: 978-3-319-25903-1
eBook Packages: Computer ScienceComputer Science (R0)