Collaborative, Context Based Activity Control Method for Camera Networks

  • Marek Kraft
  • Michał Fularz
  • Adam Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9386)


In this paper, a collaborative method for activity control of a network of cameras is presented. The method adjusts the activation level of all nodes in the network according to the observed scene activity, so that no vital information is missed, and the rate of communication and power consumption can be reduced. The proposed method is very flexible as an arbitrary number of activity levels can be defined, and it is easily adapted to the performed task. The method can be used either as a standalone solution, or integrated with other algorithms, due to its relatively low computational cost. The results of preliminary small scale test confirm its correct operation.


Smart camera Autonomous surveillance Camera network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aghajan, H., Cavallaro, A.: Multi-camera networks: principles and applications. Academic Press (2009)Google Scholar
  2. 2.
    Amer, A.: Memory-based spatio-temporal real-time object segmentation for video surveillance. In: Proceedings of SPIE-IS&T Electronic Imaging Conference on Real-Time Imaging, pp. 10–21 (2003)Google Scholar
  3. 3.
    Atzori, L., Iera, A., Morabito, G.: The Internet of things: A survey. Computer Networks 54(15), 2787–2805 (2010)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bhanu, B., Ravishankar, C., Roy-Chowdhury, A., Aghajan, H., Terzopoulos, D.: Distributed Video Sensor Networks. Springer (2011)Google Scholar
  5. 5.
    Brutzer, S., Hoferlin, B., Heidemann, G.: Evaluation of background subtraction techniques for video surveillance. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1937–1944 (2011)Google Scholar
  6. 6.
    Casares, M., Velipasalar, S.: Adaptive methodologies for energy-efficient object detection and tracking with battery-powered embedded smart cameras. IEEE Transactions on Circuits and Systems for Video Technology 21(10), 1438–1452 (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, P., Hong, K., Naikal, N., Sastry, S.S., Tygar, D., Yan, P., Yang, A.Y., Chang, L.C., Lin, L., Wang, S., Lobatón, E., Oh, S., Ahammad, P.: A low-bandwidth camera sensor platform with applications in smart camera networks. ACM Transactions on Sensor Networks 9(2), 21:1–21:23 (2013)CrossRefGoogle Scholar
  8. 8.
    Costa, D.G., Guedes, L.A., Vasques, F., Portugal, P.: Adaptive monitoring relevance in camera networks for critical surveillance applications. International Journal of Distributed Sensor Networks (2013)Google Scholar
  9. 9.
    Cozzolino, A., Flammini, F., Galli, V., Lamberti, M., Poggi, G., Pragliola, C.: Evaluating the effects of MJPEG compression on motion tracking in metro railway surveillance. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemčík, P. (eds.) ACIVS 2012. LNCS, vol. 7517, pp. 142–154. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Dadashi, N., Stedmon, A., Pridmore, T.: Semi-automated CCTV surveillance: The effects of system confidence, system accuracy and task complexity on operator vigilance, reliance and workload. Applied Ergonomics 44(5), 730–738 (2013)CrossRefGoogle Scholar
  11. 11.
    Donald, F.M., Donald, C.H.: Task disengagement and implications for vigilance performance in cctv surveillance. Cognition, Technology & Work 17(1), 121–130 (2015). CrossRefGoogle Scholar
  12. 12.
    Esterle, L., Lewis, P., Caine, H., Yao, X., Rinner, B.: Camsim: A distributed smart camera network simulator. In: 2013 IEEE 7th International Conference on Self-Adaptation and Self-Organizing Systems Workshops (SASOW), pp. 19–20, September 2013Google Scholar
  13. 13.
    Fularz, M., Kraft, M., Schmidt, A., Kasiński, A.: The architecture of an embedded smart camera for intelligent inspection and surveillance. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Progress in Automation, Robotics and Measuring Techniques. AISC, vol. 350, pp. 43–52. Springer, Heidelberg (2015) Google Scholar
  14. 14.
    Hengstler, S., Prashanth, D., Fong, S., Aghajan, H.: Mesheye: A hybrid-resolution smart camera mote for applications in distributed intelligent surveillance. In: 6th International Symposium on Information Processing in Sensor Networks, IPSN 2007, pp. 360–369, April 2007Google Scholar
  15. 15.
    Jin, X., Goto, S.: Encoder adaptable difference detection for low power video compression in surveillance system. Signal Processing: Image Communication 26(3), 130–142 (2011)Google Scholar
  16. 16.
    Kandhalu, A., Rowe, A., Rajkumar, R.: Dspcam: A camera sensor system for surveillance networks. In: Third ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2009, pp. 1–7, August 2009Google Scholar
  17. 17.
    Kovesi, P.: Video surveillance: Legally blind? In: Digital Image Computing: Techniques and Applications, DICTA 2009, pp. 204–211, December 2009Google Scholar
  18. 18.
    Ma, T., Hempel, M., Peng, D., Sharif, H.: A survey of energy-efficient compression and communication techniques for multimedia in resource constrained systems. IEEE Communications Surveys Tutorials 15(3), 963–972 (2013)CrossRefGoogle Scholar
  19. 19.
    McFarlane, N., Schofield, C.: Segmentation and tracking of piglets in images. Machine Vision and Applications 8, 187–193 (1995)CrossRefGoogle Scholar
  20. 20.
    Rahimi, M., Baer, R., Iroezi, O.I., Garcia, J.C., Warrior, J., Estrin, D., Srivastava, M.: Cyclops: In situ image sensing and interpretation in wireless sensor networks. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, SenSys 2005, pp. 192–204. ACM, New York (2005).
  21. 21.
    Rinner, B., Wolf, W.: An introduction to distributed smart cameras. Proceedings of the IEEE 96(10), 1565–1575 (2008)CrossRefGoogle Scholar
  22. 22.
    Seema, A., Reisslein, M.: Towards efficient wireless video sensor networks: A survey of existing node architectures and proposal for a Flexi-WVSNP design. IEEE Communications Surveys Tutorials 13(3), 462–486 (2011)CrossRefGoogle Scholar
  23. 23.
    Xiong, Y., Wan, S.Y., He, Y., Su, D.: Design and implementation of a prototype cloud video surveillance system. Journal of Advanced Computational Intelligence and Intelligent Informatics 18(1), 40–47 (2014)Google Scholar
  24. 24.
    Zamora, N., Marculescu, R.: Coordinated distributed power management with video sensor networks: Analysis, simulation, and prototyping. In: First ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2007, pp. 4–11, September 2007Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Control and Information EngineeringPoznan University of TechnologyPoznańPoland

Personalised recommendations