Advertisement

Effective Quantum Gravity

  • Kasia RejznerEmail author
Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

The functional approach to pQFT together with the BV framework introduced in Chap.  7 has been successfully applied to gauge theories [FR12b, FR12a] and can also be used in quantization of theories where the local symmetries involve transformation of spacetime points.

Keywords

Formal Power Series Matter Field Spacetime Point Diffeomorphism Group Asymptotic Safety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BD08]
    Brennecke, F., Dütsch, M.: Removal of violations of the master Ward identity in perturbative QFT. Rev. Math. Phys. 20(02), 119–151 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BK95]
    Brown, J.D., Kuchar, K.V.: Dust as a standard of space and time in canonical quantum gravity. Phys. Rev. D 51(10), 5600 (1995)ADSMathSciNetCrossRefGoogle Scholar
  3. [BF07]
    Brunetti, R., Fredenhagen, K.: Towards a background independent formulation of perturbative quantum gravity. Quantum Gravity, 151–159 (2007)Google Scholar
  4. [BDF09]
    Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [BFR13]
    Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory (2013). arXiv:1306.1058 [math-ph]
  6. [BFV03]
    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle-a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [CHP09]
    Coley, A., Hervik, S., Pelavas, N.: Spacetimes characterized by their scalar curvature invariants. Classical and Quantum Gravity 26(2), 025013 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [DMP09a]
    Dappiaggi, C., Moretti, V., Pinamonti, N.: Cosmological horizons and reconstruction of quantum field theories. Commun. Math. Phys. 285(3), 1129–1163 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [DMP09b]
    Dappiaggi, C., Moretti, V., Pinamonti, N.: Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50(6), 062304 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [DMP11]
    Dappiaggi, C., Moretti, V., Pinamonti, N.: Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime. Adv. Theor. Math. Phys. 15(2), 355–447 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Dit06]
    Dittrich, B.: Partial and complete observables for canonical general relativity. Class. Quantum Gravity 23(22), 6155 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [DHP15]
    Drago, N., Hack, T.-P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass (2015). arXiv preprint arXiv:1502.02705
  13. [DF02]
    Dütsch, M., Fredenhagen, K.: The master Ward identity and generalized Schwinger-Dyson equation in classical field theory, (2), 275–314 (2002). arXiv.org [hep-th]
  14. [FR12a]
    Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317(3), 697–725 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [FR12b]
    Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314(1), 93–127 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [FR12c]
    Fredenhagen, K., Rejzner, K.: Local Covariance and Background Independence. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  17. [GW96]
    Gomis, J., Weinberg, S.: Are nonrenormalizable gauge theories renormalizable? Nucl. Phys. B 469(3), 473–487 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [Hac10]
    Hack, T.-P.: On the backreaction of scalar and spinor quantum fields in curved spacetimes. Hamburg University, Thesis (2010)Google Scholar
  19. [Hac14]
    Hack, T.-P.: Quantization of the linearized Einstein-Klein-Gordon system on arbitrary backgrounds and the special case of perturbations in inflation. Class. Quantum Gravity 31(21), 215004 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [Hac15]
    Hack, T.-P.: Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes. Springer, Berlin (2015)zbMATHGoogle Scholar
  21. [HC10]
    Hervik, S., Coley, A.: Curvature operators and scalar curvature invariants. Class. Quantum Gravity 27(9), 095014 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [HW05]
    Hollands, S., Wald, R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17(03), 227–311 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Rej11a]
    Rejzner, K.: Batalin–Vilkovisky formalism in locally covariant field theory. Ph.D. thesis (2011). arXiv:1111.5130v1 [math-ph]
  24. [Reu98]
    Reuter, M.: Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 57(2), 971 (1998)ADSMathSciNetCrossRefGoogle Scholar
  25. [RS02]
    Reuter, M., Saueressig, F.: Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation. Phys. Rev. D 65(6), 065016 (2002)ADSMathSciNetCrossRefGoogle Scholar
  26. [Rov02]
    Rovelli, C.: Partial observables. Phys. Rev. D 65(12), 124013 (2002)ADSMathSciNetCrossRefGoogle Scholar
  27. [SV00]
    Sahlmann, H., Verch, R.: Microlocal spectrum condition and hadamard form for vector-valued quantum fields in curved spacetime, pp. 1–42 (2000). arXiv.org [math-ph]
  28. [Thi06]
    Thiemann, T.: Reduced phase space quantization and Dirac observables. Class. Quantum Gravity 23(4), 1163 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [Wei79]
    Weinberg, S.: Ultraviolet divergences in quantum theories of gravitation (1979)Google Scholar
  30. [Wet93]
    Wetterich, C.: Exact evolution equation for the effective potential. Phys. Lett. B 301(1), 90–94 (1993)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkYorkUK

Personalised recommendations