Advertisement

Gauge Theories

  • Kasia RejznerEmail author
Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

In Sect.  4.3 we sawn that the space of multilocal on-shell functionals \(\mathcal {F}_S(\mathcal {M})\) can be characterized as the 0th homology of the differential complex \((\Lambda \mathcal {V},\delta _S)\) (see  4.10). The 1st homology of this complex is interpreted as the space of non-trivial local symmetries. Now we discuss the quantization of theories where this homology group is non-trivial, using the BV framework, in the version proposed in (Fredenhagen and Rejzner, Communications in Mathematical Physics, 314(1):93–127, 2012 and Fredenhagen and Rejzner, Communications in Mathematical Physics, 317(3):697–725, 2012 [FR12b, FR12a]).

Keywords

Configuration Space Mill Theory Ghost Number Differential Complex Schouten Bracket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BD04]
    Beilinson, A., Drinfeld, V.: Chiral Algebras, American Mathematical Society Colloquium Publications, vol. 51. American Mathematical Society, Providence (2004)zbMATHGoogle Scholar
  2. [BD08]
    Brennecke, F., Dütsch, M.: Removal of violations of the master Ward identity in perturbative QFT. Rev. Math. Phys. 20(02), 119–151 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BFR13]
    Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory (2013). arXiv:math-ph/1306.1058
  4. [DL12]
    Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101(3), 265–287 (2012)MathSciNetCrossRefzbMATHADSGoogle Scholar
  5. [DS13]
    Dappiaggi, C., Siemssen, D.: Hadamard states for the vector potential on asymptotically flat spacetimes. Rev. Math. Phys. 25, 1 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Dim92]
    Doplicher, S., Haag, R., Roberts, J.E.: Quantized electromagnetic field on a manifold. Rev. Math. Phys. 4(02), 223–233 (1992)MathSciNetCrossRefGoogle Scholar
  7. [FR12a]
    Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317(3), 697–725 (2012)MathSciNetCrossRefzbMATHADSGoogle Scholar
  8. [FR12b]
    Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314(1), 93–127 (2012). arXiv:math-ph/1101.5112v5 (Ph.D. thesis)
  9. [Glö02]
    Glöckner, H.: Lie group structures on quotient groups and universal complexifications for infinite-dimensional lie groups. J. Funct. Anal. 194(2), 347–409 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Hol08]
    Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033–1172 (2008). arXiv:gr-qc/705.3340v3
  11. [KM97]
    Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society (AMS), Providence (1997)Google Scholar
  12. [Nee04]
    Neeb, K.-H.: Current groups for non-compact manifolds and their central extensions, Infinite dimensional groups and manifolds. In: Wurzbacher, T. (ed.) IRMA Lectures in Mathematics and Theoretical Physics, vol. 5, pp. 109–183. Walter de Gruyter, Berlin (2004)Google Scholar
  13. [Nee06]
    Neeb, K.H.: Monastir summer school. infinite-dimensional Lie groups. TU Darmstadt Preprint 2433 (2006)Google Scholar
  14. [Rej11b]
    Rejzner, K.: Fermionic fields in the functional approach to classical field theory. Rev. Math. Phys. 23(9), 1009–1033 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Rej13]
    Rejzner, K.: Remarks on local symmetry invariance in perturbative algebraic quantum field theory. Ann. Henri Poincaré 1–34 (2013)Google Scholar
  16. [Rob76]
    Roberts, J.E.: Local cohomology and its structural implications for field theory, Centre National de la Recherche Scientifique, 13-Marseille (France). Centre de Physique Theorique (1976)Google Scholar
  17. [Rob77]
    Roberts, J.E.: Mathematical aspects of local cohomology, Algebres d’opérateurs et leurs applications en physique mathématique. (Proc. Colloq. Marseille, 1977) 321–332 (1977)Google Scholar
  18. [SDH14]
    Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law. Commun. Math. Phys. 328(2), 625–667 (2014)MathSciNetCrossRefzbMATHADSGoogle Scholar
  19. [Woc06]
    Wockel, C.: Infinite-dimensional Lie theory for gauge groups. Thesis (2006)Google Scholar
  20. [Zah13]
    Zahn, J.: Locally covariant charged fields and background independence (2013). arXiv:1311.7661

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkYorkUK

Personalised recommendations