Advertisement

Interaction and Renormalization of the Scalar Field Theory

  • Kasia RejznerEmail author
Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

In the previous chapter we have covered the quantization of free theories (quadratic actions); now is the time to introduce the interactions. This is where we have to start working perturbatively. The ultimate goal of AQFT is to be able to construct interacting models in 4 spacetime dimensions non-perturbatively, but at the moment no such models are known. The perturbative approach, on the other hand, has proven to be successful in describing many phenomena in particle physics, so it is worthwhile to try to understand its mathematical foundations. It turns out that a careful analysis of the problem and employing some tools from functional analysis allow us to avoid dealing with ill defined “divergent” expressions, as is often done in physics textbooks.

References

  1. [BDFP02]
    Bahns, D., Doplicher, S., Fredenhagen, K., Piacitelli, G.: On the unitarity problem in space/time noncommutative theories. Phys. Lett. B 533(1), 178–181 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [BP57]
    Bogoliubov, N., Parasiuk, O.: Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder. Acta Mathematica 97(1), 227–266 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BS59]
    Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields, vol. 59. Interscience, New York (1959)Google Scholar
  4. [Bro06]
    Brouder, C.: Quantum field theory meets Hopf algebra (2006). arXiv:hep-th/0611153
  5. [BFK06]
    Brouder, C., Frabetti, A., Krattenthaler, C.: Non-commutative Hopf algebra of formal diffeomorphisms. Adv. Math. 200(2), 479–524 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BF00]
    Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories. Commun. Math. Phys. 208(3), 623–661 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [BFV03]
    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [BDF09]
    Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [CK00]
    Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann–Hilbert problem I: the Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210(1), 249–273 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [CK01]
    Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann–Hilbert problem II: The \(\beta \)-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216, 215–241 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [Dan13]
    Dang, N.V.: Renormalization of quantum field theory on curved space-times, a causal approach (2013). arXiv:1312.5674
  12. [DF01a]
    Dütsch, M., Fredenhagen, K.: Algebraic quantum field theory, perturbation theory, and the loop expansion. Commun. Math. Phys. 219(1), 5–30 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [DF04]
    Dütsch, M., Fredenhagen, K.: Causal perturbation theory in terms of retarded products, and a proof of the action ward identity. Rev. Math. Phy. 16(10), 1291–1348 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [DF07]
    Dütsch, M., Fredenhagen, K.: Action ward identity and the Stückelberg–Petermann renormalization group. Progress in Mathematics, vol. 251, pp. 113–123. Birkhäuser, Basel (2007)Google Scholar
  15. [DFKR14]
    Dütsch, M., Fredenhagen, K., Keller, K.J., Rejzner, K.: Dimensional regularization in position space and a forest formula for Epstein–Glaser renormalization. J. Math. Phy. 55(12), 122303 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [Efi67]
    Efimov, G.: Non-local quantum theory of the scalar field. Commun. Math. Phys. 5(1), 42–56 (1967)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [EG73]
    Epstein, H., Glaser, V.: The role of locality in perturbation theory. AHP 19(3), 211–295 (1973)MathSciNetzbMATHGoogle Scholar
  18. [FR12a]
    Fredenhagen, K., Rejzner, K.: Batalin–Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317(3), 697–725 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [FR14]
    Fredenhagen, K., Rejzner, K.: QFT on curved spacetimes: axiomatic framework and examples (2014). arXiv:math-ph/1412.5125
  20. [FR15]
    Fredenhagen, K., Rejzner, K.: Perturbative construction of models of algebraic quantum field theory (2015). arXiv:math-ph/1503.07814
  21. [GBL00]
    Gracia-Bondia, J.M., Lazzarini, S.: Connes–Kreimer–Epstein–Glaser renormalization. arXiv:hep-th/0006106
  22. [HR16]
    Hawkins, E., Rejzner, K.: Deformation quantization and pAQFT, work in progress (2016)Google Scholar
  23. [Hep66]
    Hepp, K.: Proof of the Bogoliubov–Parasiuk theorem on renormalization. Commun. Math. Phys. 2(1), 301–326 (1966)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [HW01]
    Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223(2), 289–326 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [HW02a]
    Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231(2), 309–345 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [HW02b]
    Hollands, S., Wald, R.M.: On the renormalization group in curved spacetime, Commun. Math. Phys. 237, 123–160 (2002). arXiv:gr-qc/0209029
  27. [HW05]
    Hollands, S., Wald, R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17(03), 227–311 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. [KW91]
    Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate killing horizon. Phys. Rep. 207(2), 49–136 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [Kel10]
    Keller, K.J.: Dimensional regularization in position space and a forest formula for regularized Epstein–Glaser renormalization. Ph.D. thesis, University of Hamburg (2010). arXiv:math-ph/1006.2148
  30. [Kir67]
    Kirzhnits, D.: Nonlocal quantum field theory. Sov. Phys. Uspekhi 9(5), 692 (1967)ADSCrossRefGoogle Scholar
  31. [Pin00]
    Pinter, G.: The Hopf algebra structure of Connes and Kreimer in Epstein–Glaser renormalization. Prog. Theor. Phys. 54, 227–233 (2000)MathSciNetzbMATHGoogle Scholar
  32. [Pin01]
    Pinter, G.: Finite renormalizations in the Epstein Glaser framework and renormalization of the S-matrix of 4-theory. Ann. Phys. 10, 333–363 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  33. [PS82]
    Popineau, G., Stora, R.: A pedagogical remark on the main theorem of perturbative renormalization theory, unpublished preprint (1982)Google Scholar
  34. [Sch95]
    Scharf, G.: Finite QED: The Causal Approach. Springer, New York (1995)zbMATHGoogle Scholar
  35. [Ste71]
    Steinmann, O.: Perturbation Expansions in Axiomatic Field Theory, vol. 11. Springer, Berlin (1971)zbMATHGoogle Scholar
  36. [Sto02]
    Stora, R.: Pedagogical experiments in renormalized perturbation theory, contribution to the conference “Theory of Renormalization and Regularization”, Hesselberg, Germany (2002)Google Scholar
  37. [SR50]
    Stückelberg, E., Rivier, D.: A propos des divergences en théorie des champs quantifiés. Helv. Phys. Acta 23, no. Suppl III, 236–239 (1950)Google Scholar
  38. [Ver01]
    Verch, R.: A spin-statistics theorem for quantum fields on curved spacetime manifolds in a generally covariant framework. Commun. Math. Phys. 223(2), 261–288 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkYorkUK

Personalised recommendations