Skip to main content

Deformation Quantization

  • Chapter
  • First Online:
Perturbative Algebraic Quantum Field Theory

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

The reformulation of classical theory done in Chap. 3 served as a preparation for constructing QFT models. The framework that we are going to use is deformation quantization combined with causal perturbation theory. To quantize a given theory described by the action S we first need to split S into a free part \(S_0\) (at most quadratic in field configurations) and the interaction term \(S_I\). Then, we quantize the theory defined by \(S_0\), using deformation quantization based on a Moyal-type formula, and in the final step we will re-introduce the interaction using causal perturbation theory. This last step will be discussed in Chap. 6, while the present chapter deals with deformation quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Phys. 111(1), 61–110 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. II. Physical applications. Ann. Phys. 111(1), 111–151 (1978)

    MathSciNet  MATH  Google Scholar 

  3. Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds an gl(N), \({N} \rightarrow \infty \) limits. Commun. Math. Phys. 165(2), 281–296 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chilian, B., Fredenhagen, K.: The time slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287(2), 513–522 (2008). arXiv:0802.1642v1 [math-ph]

    Google Scholar 

  6. DÃijtsch, M., Fredenhagen, K.: Algebraic quantum field theory, perturbation theory, and the loop expansion. Commun. Math. Phys. 219(1), 5–30 (2001)

    Google Scholar 

  7. Dütsch, M., Fredenhagen, K.: Perturbative algebraic field theory, and deformation quantization. Math. Phys. Math. Phys. Quantum Oper. Algebr. Asp. 30, 1–10 (2001)

    Google Scholar 

  8. Dereziński, J.: Gérard, C: Mathematics of Quantization and Quantum Fields. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  9. Dito, J.: Star-product approach to quantum field theory: the free scalar field. Lett. Math. Phys. 20(2), 125–134 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12(7), 405–460 (1946)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hawkins, E.: An obstruction to quantization of the sphere. Commun. Math. Phys. 283(3), 675–699 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kontsevich, M.: Deformation quantization of Poisson manifolds. I. Lett. Math. Phys. 66, 157–216 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Rieffel, M.A.: Quantization and \(C^*\)-algebras. Contemp. Math. 167, 67–67 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Rieffel, M.A.: Questions on quantization. Contemp. Math. 228, 315–326 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Van Hove, L.: Sur certaines représentations unitaires d’un groupe infini de transformations, acad. roy. Belg. Cl. Sci. Mém. Collect 80(2), 29 (1951)

    Google Scholar 

  17. Waldmann, S.: Poisson-geometrie und deformationsquantisierung: Eine einführung. Springer, Berlin (2007)

    Google Scholar 

  18. Zahn, J.: The renormalized locally covariant Dirac field. Rev. Math. Phys. 26, 1330012 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasia Rejzner .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Rejzner, K. (2016). Deformation Quantization. In: Perturbative Algebraic Quantum Field Theory. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-25901-7_5

Download citation

Publish with us

Policies and ethics