Advertisement

Deformation Quantization

  • Kasia RejznerEmail author
Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

The reformulation of classical theory done in Chap.  3 served as a preparation for constructing QFT models. The framework that we are going to use is deformation quantization combined with causal perturbation theory. To quantize a given theory described by the action S we first need to split S into a free part \(S_0\) (at most quadratic in field configurations) and the interaction term \(S_I\). Then, we quantize the theory defined by \(S_0\), using deformation quantization based on a Moyal-type formula, and in the final step we will re-introduce the interaction using causal perturbation theory. This last step will be discussed in Chap.  6, while the present chapter deals with deformation quantization.

Keywords

Formal Power Series Star Product Field Configuration Deformation Quantization Canonical Poisson Bracket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BFF+78a]
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Phys. 111(1), 61–110 (1978)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [BFF+78b]
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. II. Physical applications. Ann. Phys. 111(1), 111–151 (1978)MathSciNetzbMATHGoogle Scholar
  3. [BMS94]
    Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds an gl(N), \({N} \rightarrow \infty \) limits. Commun. Math. Phys. 165(2), 281–296 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [BDF09]
    Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [CF08]
    Chilian, B., Fredenhagen, K.: The time slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287(2), 513–522 (2008). arXiv:0802.1642v1 [math-ph]
  6. [DF01b]
    DÃijtsch, M., Fredenhagen, K.: Algebraic quantum field theory, perturbation theory, and the loop expansion. Commun. Math. Phys. 219(1), 5–30 (2001)Google Scholar
  7. [DF01a]
    Dütsch, M., Fredenhagen, K.: Perturbative algebraic field theory, and deformation quantization. Math. Phys. Math. Phys. Quantum Oper. Algebr. Asp. 30, 1–10 (2001)Google Scholar
  8. [DG13]
    Dereziński, J.: Gérard, C: Mathematics of Quantization and Quantum Fields. Cambridge University Press, Cambridge (2013)Google Scholar
  9. [Dit90]
    Dito, J.: Star-product approach to quantum field theory: the free scalar field. Lett. Math. Phys. 20(2), 125–134 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [Gro46]
    Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12(7), 405–460 (1946)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [Haw08]
    Hawkins, E.: An obstruction to quantization of the sphere. Commun. Math. Phys. 283(3), 675–699 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [Kon03]
    Kontsevich, M.: Deformation quantization of Poisson manifolds. I. Lett. Math. Phys. 66, 157–216 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [Rad96]
    Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [Rie94]
    Rieffel, M.A.: Quantization and \(C^*\)-algebras. Contemp. Math. 167, 67–67 (1994)MathSciNetzbMATHGoogle Scholar
  15. [Rie98]
    Rieffel, M.A.: Questions on quantization. Contemp. Math. 228, 315–326 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [VH51]
    Van Hove, L.: Sur certaines représentations unitaires d’un groupe infini de transformations, acad. roy. Belg. Cl. Sci. Mém. Collect 80(2), 29 (1951)Google Scholar
  17. [Wal07]
    Waldmann, S.: Poisson-geometrie und deformationsquantisierung: Eine einführung. Springer, Berlin (2007)Google Scholar
  18. [Zah14]
    Zahn, J.: The renormalized locally covariant Dirac field. Rev. Math. Phys. 26, 1330012 (2014)Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkYorkUK

Personalised recommendations