Classical Theory

  • Kasia RejznerEmail author
Part of the Mathematical Physics Studies book series (MPST)


Having defined the essential kinematical structure we are now ready to introduce the dynamics. To this end we use a generalization of the Lagrange formalism. The precise relation to notions known from classical mechanics will be explained in Sect. 4.5.


Formal Power Series Smooth Curf Cauchy Surface Cauchy Data Hyperbolic Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [BGP07]
    Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society, Zurich (2007)CrossRefzbMATHGoogle Scholar
  2. [BD08]
    Brennecke, F., Dütsch, M.: Removal of violations of the master ward identity in perturbative QFT. Rev. Math. Phys. 20(2), 119–151 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BDLGR16]
    Brouder, C., Dang, N., Laurent-Gengoux, C., Rejzner, K.: Functionals and their derivatives in quantum field theory, work in progress (2016)Google Scholar
  4. [BDH14]
    Brouder, C., Dang, N.V., Hélein, F.: Boundedness and continuity of the fundamental operations on distributions having a specified wave front set. (with a counter example by Semyon Alesker) (2014). arXiv:1409.7662
  5. [BDF09]
    Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BFR13]
    Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory (2013). arXiv:math-ph/1306.1058
  7. [BFR12]
    Brunetti, R., Fredenhagen, K., Ribeiro, P.L.: Algebraic structure of classical field theory I: kinematics and linearized dynamics for real scalar fields. arXiv:math-ph/1209.2148v2
  8. [CP81]
    Chazarain, J., Piriou, A.: Introduction à la théorie des équations aux dérivées partielles linéaires, vol. 3. Gauthier-Villars (1981)Google Scholar
  9. [Dab14a]
    Dabrowski, Y.: Functional properties of generalized Hörmander spaces of distributions I: Duality theory, completions and bornologifications (2014). arXiv:1411.3012
  10. [Dab14b]
    Dabrowski, Y.: Functional properties of generalized Hörmander spaces of distributions II: multilinear maps and applications to spaces of functionals with wave front set conditions (2014). arXiv:math-ph/1412.1749
  11. [DB14]
    Dabrowski, Y., Brouder, C.: Functional properties of Hörmander’s space of distributions having a specified wavefront set. Commun. Math. Phys. 332(3), 1345–1380 (2014)MathSciNetCrossRefzbMATHADSGoogle Scholar
  12. [DF02]
    Dütsch, M., Fredenhagen, K.: The master Ward identity and generalized Schwinger-Dyson equation in classical field theory 2, 275–314 (2002). hep-th
  13. [Dui96]
    Duistermaat, J.J.: Fourier Integral Operators, vol. 130. Springer Science and Business Media (1996)Google Scholar
  14. [FV11a]
    Fewster, C.J., Verch, R.: Dynamical locality and covariance: what makes a physical theory the same in all spacetimes? 1–57Google Scholar
  15. [FV11b]
    Fewster, C.J., Verch, R.: Dynamical locality of the free scalar field (2011). arXiv:1109.6732
  16. [FR12b]
    Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314(1), 93–127 (2012)MathSciNetCrossRefzbMATHADSGoogle Scholar
  17. [FR14]
    Fredenhagen, K., Rejzner, K.: QFT on curved spacetimes: axiomatic framework and examples (2014). arXiv:math-ph/1412.5125
  18. [FR15]
    Fredenhagen, K., Rejzner, K.: Perturbative construction of models of algebraic quantum field theory (2015). arXiv:math-ph/1503.07814
  19. [Hör71]
    Hörmander, L.: Fourier integral operators. I. Acta Math. 127(1), 79–183 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Hör03]
    Hörmander, L.: The analysis of the linear partial differential operators I: distribution theory and fourier analysis. Classics in Mathematics. Springer, Berlin (2003)Google Scholar
  21. [IZ06]
    Itzykson, C., Zuber, J.-B.: Quantum Field Theory. Courier Corporation (2006)Google Scholar
  22. [Jak09]
    Jakobs, S.: Eichbrücken in der klassischen Feldtheorie. Thesis (2009)Google Scholar
  23. [KM97]
    Kriegl, A., Michor, P.W.: The convenient setting of global analysis. Mathematical Surveys and Monographs, vol. 53. AMS (1997)Google Scholar
  24. [Mey04]
    Meyer, R.: Bornological versus topological analysis in metrizable spaces. Contemp. Math. 363, 249–278 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. [Pei52]
    Peierls, R.E.: The commutation laws of relativistic field theory. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 214(1117), 143–157 (1952)MathSciNetCrossRefzbMATHADSGoogle Scholar
  26. [Rad96]
    Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)MathSciNetCrossRefzbMATHADSGoogle Scholar
  27. [Sch57]
    Schwartz, L.: Théorie des distributions à valeurs vectorielles. I. Annales de l’Institut Fourier 7, 1–141 (1957)CrossRefzbMATHGoogle Scholar
  28. [Trè06]
    Trèves, F.: Topological Vector Spaces, Distributions and Kernels, vol. 25. Courier Corporation (2006)Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkYorkUK

Personalised recommendations