Kinematical Structure

  • Kasia RejznerEmail author
Part of the Mathematical Physics Studies book series (MPST)


In the framework of perturbative algebraic quantum field theory (pAQFT) we start with the classical theory, which is subsequently quantized. We work in the Lagrangian framework, but there are some modifications that we need to make to deal with the infinite dimensional character of field theory. In this chapter we give an overview of mathematical structures that will be needed later on to construct models of classical and quantum field theories. Since we do not fix the dynamics yet, the content of this chapter describes the kinematical structure of our model. Readers familiar with some of the concepts we introduce here can skip corresponding sections.


Vector Field Configuration Space Field Configuration Functional Derivative Local Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Bas64]
    Bastiani, A.: Applications différentiables et variétés différentiables de dimension infinie. J. d’Analyse mathématique 13(1), 1–114 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Buc72]
    Buchwalter, H.: Produit topologique, produit tensoriel et \( c \)-replétion. Mémoires de la Société Mathématique de France 31, 51–71 (1972)MathSciNetzbMATHGoogle Scholar
  3. [BGP07]
    Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization. Eur. Math. Soc. (2007)Google Scholar
  4. [BF09a]
    Bär, C., Fredenhagen, K.: Quantum field theory on curved spacetimes. Concepts and mathematical foundations. Lect. Notes Phys. 786 (2009)Google Scholar
  5. [BFR13]
    Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory (2013). arXiv:math-ph/1306.1058
  6. [BDLGR16]
    Brouder, C., Dang, N., Laurent-Gengoux, C., Rejzner, K.: Functionals and their derivatives in quantum field theory, work in progress (2016)Google Scholar
  7. [BFR12]
    Brunetti, R., Fredenhagen, K., Ribeiro, P.L.: Algebraic structure of classical field theory I: Kinematics and linearized dynamics for real scalar fields. arXiv:math-ph/1209.2148v2
  8. [Ham82]
    Hamilton, R.S.: The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982)Google Scholar
  9. [Hor03]
    Hörmander, L.: The analysis of the linear partial differential operators I: Distribution theory and fourier analysis. Classics in Mathematics, Springer (2003)Google Scholar
  10. [Hor12]
    Horvth, J.: Topological vector spaces and distributions, Courier Corporation (2012)Google Scholar
  11. [Jar12]
    Jarchow, H.: Locally convex spaces, Springer Science and Business Media (2012)Google Scholar
  12. [KM97]
    Kriegl, A., Michor, P.W.: The convenient setting of global analysis. Math. Surv. Monogr. 53, AMS (1997)Google Scholar
  13. [Mic38]
    Michal, A.D: Differential calculus in linear topological spaces. Proc. Natl. Acad. Sci. USA 24(8), 340–342 (1938)Google Scholar
  14. [Mic40]
    Michal, A.D.: Differential of functions with arguments and values in topological abelian groups. Proc. Nat. Acad. Sci. USA 26, 356359 (1940)MathSciNetCrossRefGoogle Scholar
  15. [Mil84]
    Milnor, J.: Remarks on infinite-dimensional lie groups (1984)Google Scholar
  16. [Mic84]
    Michor, P.W.: A convenient setting for differential geometry and global analysis I. II. Cahiers Topol. Geo. Diff 25, 63–109 (1984)MathSciNetzbMATHGoogle Scholar
  17. [Nee06]
    Neeb, K.H.: Monastir summer school. Infinite-dimensional Lie groups, TU Darmstadt Preprint 2433 (2006)Google Scholar
  18. [Rej11b]
    Rejzner, K.: Fermionic fields in the functional approach to classical field theory. Rev. Math. Phys. 23(9), 1009–1033 (2011)Google Scholar
  19. [Rud91]
    Rudin, W.: Functional analysis. International series in pure and applied mathematics (1991)Google Scholar
  20. [Sac08]
    Sachse, C.: A categorical formulation of superalgebra and supergeometry. arXiv:0802.4067v1 [math.AG] (2008)
  21. [Sch57]
    Schwartz, L.: Théorie des distributions à valeurs vectorielles. I. Annales de l’Institut Fourier 7, 1–141 (1957)CrossRefzbMATHGoogle Scholar
  22. [Sch58]
    Schwartz, L.: Théorie des distributions à valeurs vectorielles. II. Annales de l’Institut Fourier 8, 1–209 (1958)CrossRefzbMATHGoogle Scholar
  23. [SW00]
    Streater, R.F., Wightman, A.S.: PCT, spin and statistics, and all that, Princeton University Press (2000)Google Scholar
  24. [Tre06]
    Trèves, T.: Topological vector spaces, distributions and kernels, vol. 25, Courier Corporation (2006)Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkYorkUK

Personalised recommendations