Advertisement

Algebraic Approach to Quantum Theory

  • Kasia RejznerEmail author
Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

Before entering the realm of the quantum theory of fields, let’s have a look at something simpler and better understood, namely quantum mechanics (QM). To prepare the ground for what follows, we will present an abstract formulation of QM and discuss how it relates to the more standard Dirac–von Neumann axioms (Dirac, The principles of quantum mechanics, 1930, [Dir30], Neumann, Mathematische grundlagen der quantenmechanik, 1932, [vN32]).

References

  1. [Ala13]
    Alazzawi, S.: Deformations of fermionic quantum field theories and integrable models. Lett. Math. Phys. 103(1), 37–58 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [Ara99]
    Araki, H.: Mathematical Theory of Quantum Fields, vol. 101. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  3. [AS71]
    Araki, H., Shiraishi, M.: On quasifree states of the canonical commutation relations (I). Publ. Res. Inst. Math. Sci. 7(1), 105–120 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BGP07]
    Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society, Zurich (2007)CrossRefzbMATHGoogle Scholar
  5. [BRZ14]
    Bahns, D., Rejzner, K., Zahn, J.: The effective theory of strings. Commun. Math. Phys. 327(3), 779–814 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [BS03]
    Bernal, A.N., Sánchez, M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243(3), 461–470 (2003)ADSCrossRefzbMATHGoogle Scholar
  7. [BSS14]
    Becker, C., Schenkel, A., Szabo, R.J.: Differential cohomology and locally covariant quantum field theory (2014). arXiv:hep-th/1406.1514
  8. [BT13]
    Bischoff, M., Tanimoto, Y.: Construction of wedge-local nets of observables through longo-witten endomorphisms. ii. Commun. Math. Phys. 317(3), 667–695 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [Boa00]
    Boas, F.-M.: Gauge theories in local causal perturbation theory. DESY-THESIS-1999-032. ISSN 1435–808, 1–84 (2000)Google Scholar
  10. [BC13]
    Bostelmann, H., Cadamuro, D.: An operator expansion for integrable quantum field theories. J. Phys. A: Math. Theor. 46(9), 095401 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [BR87]
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  12. [BR97]
    Bratteli, O., Robinson, D.W.: Operator Algebras and Statistical Mechanics, vol. 2. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  13. [BD08]
    Brennecke, F., Dütsch, M.: Removal of violations of the master Ward identity in perturbative QFT. Rev. Math. Phys. 20(02), 119–151 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [BF00]
    Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories. Commun. Math. Phys. 208(3), 623–661 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [BF09b]
    Brunetti, R., Fredenhagen, K.: Quantum Field Theory on Curved Backgrounds, pp. 129–155. Springer, Berlin (2009)Google Scholar
  16. [BF97]
    Brunetti, R., Fredenhagen, K.: Interacting quantum fields in curved space: renormalizability of \(\varphi ^4\), pp. 1–18. arXiv:gr-qc/9701048v1
  17. [BFK96]
    Brunetti, R., Fredenhagen, K., Köhler, M.: The microlocal spectrum condition and wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180(3), 633–652 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [BFV03]
    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle-a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [BDF09]
    Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [BFR13]
    Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory (2013). arXiv:math-ph/1306.1058
  21. [BFIR14]
    Brunetti, R., Fredenhagen, K., Imani, P., Rejzner, K.: The locality axiom in quantum field theory and tensor products of \(C^*\)-algebras. Rev. Math. Phys. 26, 1450010 (2014). arXiv:math-ph/1206.5484
  22. [BS14]
    Buchholz, D., Størmer, E.: Superposition, transition probabilities and primitive observables in infinite quantum systems (2014). arXiv:1411.2100
  23. [DF01b]
    Dütsch, M., Fredenhagen, K.: Algebraic quantum field theory, perturbation theory, and the loop expansion. Commun. Math. Phys. 219(1), 5–30 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [DL12]
    Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101(3), 265–287 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [DG13a]
    Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge University Press, Cambridge (2013)CrossRefzbMATHGoogle Scholar
  26. [DB01]
    Dütsch, M., Boas, F.-M.: The Master Ward Identity, pp. 1–73Google Scholar
  27. [DF98]
    Dütsch, M., Fredenhagen, K.: A local (perturbative) construction of observables in gauge theories: the example of QED (1998). arXiv:hep-th/9807078
  28. [DF01a]
    Dütsch, M., Fredenhagen, K.: Perturbative algebraic field theory, and deformation quantization. Math. Phys. Math. Phys.: Quantum Oper. Algebr. Asp. 30, 1–10 (2001)Google Scholar
  29. [DF02]
    Dütsch, M., Fredenhagen, K.: The master Ward identity and generalized Schwinger-Dyson equation in classical field theory. 243(2), 275–314 (2002). arXiv:hep-th/0211242
  30. [DF04]
    Dütsch, M., Fredenhagen, K.: Causal perturbation theory in terms of retarded products, and a proof of the Action Ward Identity. Rev. Math. Phys. 16(10), 1291–1348 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  31. [DF07]
    Dütsch, M., Fredenhagen, K.: Action Ward Identity and the Stückelberg-Petermann Renormalization Group. Progress in Mathematics. Birkhäuser Verlag, Basel (2007)CrossRefzbMATHGoogle Scholar
  32. [Dim80]
    Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219–228 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [Dim92]
    Dimock, J.: Quantized electromagnetic field on a manifold. Rev. Math. Phys. 4(02), 223–233 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  34. [Dir30]
    Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1930)zbMATHGoogle Scholar
  35. [DHR71]
    Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics I. Commun. Math. Phys. 23(3), 199–230 (1971)ADSMathSciNetCrossRefGoogle Scholar
  36. [DHR74]
    Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics II. Commun. Math. Phys. 35(1), 49–85 (1974)ADSMathSciNetCrossRefGoogle Scholar
  37. [DG14a]
    Dybalski, W., Gérard, C.: A criterion for asymptotic completeness in local relativistic QFT. Commun. Math. Phys. 332(3), 1167–1202 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [DG14b]
    Dybalski, W., Gérard, C.: Towards asymptotic completeness of two-particle scattering in local relativistic QFT. Commun. Math. Phys. 326(1), 81–109 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [DT11]
    Dybalski, W., Tanimoto, Y.: Asymptotic completeness in a class of massless relativistic quantum field theories. Commun. Math. Phys. 305(2), 427–440 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [Few07]
    Fewster, C.J.: Quantum energy inequalities and local covariance II: categorical formulation. Gen. Relativ. Gravit. 39(11), 1855–1890 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [Few13]
    Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25(05), 1350008 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. [Few15]
    Fewster, C.J.: On the spin-statistics connection in curved spacetimes (2015). arXiv:math-ph/1503.05797
  43. [FV11b]
    Fewster, C.J., Verch, R.: Dynamical locality of the free scalar field (2011). arXiv:1109.6732
  44. [FV15]
    Fewster, C.J., Verch, R.: Algebraic quantum field theory in curved spacetimes (2015). arXiv:1504.00586
  45. [FV11a]
    Fewster, C.J., Verch, R.: Dynamical locality and covariance: what makes a physical theory the same in all spacetimes? pp. 1–57Google Scholar
  46. [Fre13]
    Fredenhagen, K.: Advanced Quantum Field Theory, Lecture NotesGoogle Scholar
  47. [FR12a]
    Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317(3), 697–725 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [FR12b]
    Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314(1), 93–127 (2012) (Ph.D. thesis). arXiv:math-ph/1101.5112v5
  49. [Gel43]
    Gelfand, I.M., Neumark, M.A.: On the imbedding of normed rings into the ring of operators in Hilbert space. Matematiceskij sbornik 54(2), 197–217 (1943)MathSciNetzbMATHGoogle Scholar
  50. [Gro55]
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Séminaire Bourbaki 2, 193–200 (1955)Google Scholar
  51. [Haa58]
    Haag, R.: Quantum field theories with composite particles and asymptotic conditions. Phys. Rev. 112(2), 669 (1958)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [Haa93]
    Haag, R.: Local Quantum Physics. Springer, Berlin (1993)zbMATHGoogle Scholar
  53. [HK64]
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5(7), 848–861 (1964)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [Hol08]
    Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033–1172 (2008). arXiv:gr-qc/705.3340v3
  55. [HW01]
    Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223(2), 289–326 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [HW02a]
    Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231(2), 309–345 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [HW02b]
    Hollands, S., Wald, R.M.: On the renormalization group in curved spacetime. Commun. Math. Phys. 237, 123–160 (2002). arXiv:gr-qc/0209029
  58. [HW05]
    Hollands, S., Wald, R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17(03), 227–311 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  59. [Jor33]
    Jordan, P.: Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik. Weidmann (1933)Google Scholar
  60. [JvNW34]
    Jordan, P., von Neumann, J., Wigner, E.P.: On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35, 29–64 (1934)MathSciNetCrossRefzbMATHGoogle Scholar
  61. [JS93]
    Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  62. [Kad83]
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras: Elementary Theory. Academic Press, New York (1983)zbMATHGoogle Scholar
  63. [Kay78]
    Kay, B.S.: Linear spin-zero quantum fields in external gravitational and scalar fields. Commun. Math. Phys. 62(1), 55–70 (1978)ADSMathSciNetCrossRefGoogle Scholar
  64. [KW91]
    Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep. 207(2), 49–136 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [Köt69]
    Köthe, G.: Topological vector spaces I, grundlehren der mathematischen wissenchaften, vol. 159. Springer, Berlin (1969)Google Scholar
  66. [Lec08]
    Lechner, G.: Construction of quantum field theories with factorizing s-matrices. Commun. Math. Phys. 277(3), 821–860 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [ML78]
    Mac Lane, S.: Categories for the Working Mathematician, Springer Science and Business Media, vol. 5. Berlin (1978)Google Scholar
  68. [Mor13]
    Moretti, V.: Spectral Theory and Quantum Mechanics: With an Introduction to the Algebraic Formulation. Springer Science and Business Media, vol. 64. Springer, Milan (2013)Google Scholar
  69. [RS80]
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis, vol. 1. Gulf Professional Publishing, Houston (1980)zbMATHGoogle Scholar
  70. [RS61]
    Reeh, H., Schlieder, S.: Bemerkungen zur Unitäräquivalenz von lorentzinvarianten Feldern. Il Nuovo Cimento 22(5), 1051–1068 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  71. [Rej11a]
    Rejzner, K.: Batalin-Vilkovisky formalism in locally covariant field theory. Ph.D. thesis (2011). arXiv:math-ph:1111.5130v1
  72. [Rej11b]
    Rejzner, K.: Fermionic fields in the functional approach to classical field theory. Rev. Math. Phys. 23(9), 1009–1033 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  73. [Rud91]
    Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991)zbMATHGoogle Scholar
  74. [Rue62]
    Ruelle, D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta 35, 147 (1962)MathSciNetzbMATHGoogle Scholar
  75. [SDH14]
    Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law. Commun. Math. Phys. 328(2), 625–667 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [Sch57]
    Schwartz, L.: Théorie des distributions à valeurs vectorielles. I. Annales de l’Institut Fourier 7, 1–141 (1957)CrossRefzbMATHGoogle Scholar
  77. [Sch58]
    Schwartz, L.: Théorie des distributions à valeurs vectorielles. II. Annales de l’Institut Fourier 8, 1–209 (1958)CrossRefzbMATHGoogle Scholar
  78. [Seg]
    Segal, G.: Two dimensional conformal field theory and modular functors. In: IX International Congress of Mathematical Physics, pp. 22–37. Hilger, Bristol (1989)Google Scholar
  79. [Seg47a]
    Segal, I.E.: Irreducible representations of operator algebras. Bull. Am. Math. Soc. 53(2), 73–88 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  80. [Seg47b]
    Segal, I.E.: Postulates for general quantum mechanics. Ann. Math. 48, 930–948 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  81. [Sto30]
    Stone, M.H.: Linear transformations in Hilbert space: III. Operational methods and group theory. Proc. Natl. Acad. Sci. USA 16(2), 172 (1930)ADSCrossRefzbMATHGoogle Scholar
  82. [Str08]
    Strocchi, F.: An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians, vol. 28. World Scientific, New Jersey (2008)Google Scholar
  83. [Tan12]
    Tanimoto, Y.: Construction of wedge-local nets of observables through Longo-Witten endomorphisms. Commun. Math. Phys. 314(2), 443–469 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. [vN32]
    von Neumann, J.: Mathematische grundlagen der quantenmechanik. Springer, New York (1932)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkYorkUK

Personalised recommendations