OpenGridMap: An Open Platform for Inferring Power Grids with Crowdsourced Data

  • José RiveraEmail author
  • Christoph Goebel
  • David Sardari
  • Hans-Arno Jacobsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9424)


The energy transition requires profound changes to the power grid, both on the transmission and distribution level. The ability to assess the impact of these changes, e.g., the integration of more solar power or electric mobility, requires data and tools that only exist partially today. The goal of this paper is to introduce OpenGridMap, a new project with the goal of creating an open platform for inferring realistic power grids based on actual data. Our vision is to provide a tool to researchers and practitioners that is able to produce realistic input data for simulation studies. OpenGridMap will support the entire process from data collection to formatting grid data for various purposes. We explore innovative ways to capture data and produce power grid approximations, e.g., using smartphone apps, expert classification, existing map APIs, and graph inference algorithms. The latest developments of the project can be found at


Power grids Power distribution Geographic information systems Crowdsourcing 



We would like to thank Klaus Schreiber, Tanuj Ghinaiya, Clotilde Guinard and Shota Bakuraze from TU München for their contributions to the project. We would also like to thank Michael Metzger from Siemens AG for his contributions as advisor to the project. Most importantly, we would like to thank all the countless contributors that have helped crowdsource geographical data. This research was supported by a German Federal Ministry of Education and Research grant (BMBF 01IS12057) and the Alexander von Humboldt Foundation. During the cause of this work, H.A. Jacobsen held affiliations with the University of Toronto, Canada, and the Technische Universität München, Germany.


  1. 1.
    ArcGIS platform Esri. Accessed 26 May 2015
  2. 2.
    Attrakdiff. Accessed 26 May 2015
  3. 3.
    Energie-Atlas Bayern. Accessed 30 September 2010
  4. 4.
    EnergyMap. Accessed 26 May 2015
  5. 5.
    Google play store grid2osm GisApp. Accessed 26 May 2015
  6. 6.
    QGIS A Free and Open Source Geographic Information System. Accessed 26 May 2015
  7. 7.
    Usage Limits for Google Maps API Web Services. Accessed 26 May 2015
  8. 8.
    Albert, R., Albert, I., Nakarado, G.L.: Structural vulnerability of the North American power grid. Phys. Rev. E 69(2), 025103 (2004)CrossRefGoogle Scholar
  9. 9.
    Bazilian, M., Rice, A., Rotich, J., Howells, M., DeCarolis, J., Macmillan, S., Brooks, C., Bauer, F., Liebreich, M.: Open source software and crowdsourcing for energy analysis. Energy Policy 49, 149–153 (2012)CrossRefGoogle Scholar
  10. 10.
    Chassin, D., Schneider, K., Gerkensmeyer, C.: GridLAB-D: an open-source power systems modeling and simulation environment. In: Transmission and Distribution Conference and Exposition, T&# x00026; D. IEEE/PES, pp. 1–5. IEEE (2008)Google Scholar
  11. 11.
    Cloteaux, B.: Limits in modeling power grid topology. In: Proceedings of the 2nd IEEE Network Science Workshop, NSW 2013, April 29–May 1, 2013, Thayer Hotel, West Point, NY, USA, pp. 16–22 (2013).;
  12. 12.
    Deutsche Energie-Agentur: dena-Verteilnetzstudie: Ausbau- und Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030. Technical report, November 2012Google Scholar
  13. 13.
    Esri: Enterprise GIS and the Smart Electric Grid. Technical report (2012)Google Scholar
  14. 14.
    Federal Minestry for Justice and Consumer Protection: Energiewirtschaftsgesetz (EnWG) (2005)Google Scholar
  15. 15.
    Gibson, R., Erle, S.: Google Maps Hacks: Tips & Tools for Geographic Searching and Remixing (Hacks)Google Scholar
  16. 16.
    Golightly, I., Jones, D.: Visual control of an unmanned aerial vehicle for power line inspection. In: Proceedings 12th International Conference on Advanced Robotics, ICAR 2005, pp. 288–295. IEEE (2005)Google Scholar
  17. 17.
    Haklay, M.M., Weber, P.: OpenStreetMap: user-generated street Maps. IEEE Pervasive Comput. 7(4), 12–18 (2008). CrossRefGoogle Scholar
  18. 18.
    Heipke, C.: Crowdsourcing geospatial data. ISPRS J. Photogrammetry Remote Sens. 65(6), 550–557 (2010)CrossRefGoogle Scholar
  19. 19.
    Hines, P., Blumsack, S., Cotilla Sanchez, E., Barrows, C.: The topological and electrical structure of power grids. In: 2010 43rd Hawaii International Conference on System Sciences (HICSS), pp. 1–10, January 2010Google Scholar
  20. 20.
    Hodson, H.: Google’s ingress game is a gold mine for augmented reality. New Sci. 216(2893), 19 (2012)CrossRefGoogle Scholar
  21. 21.
    Kanhere, S.S.: Participatory sensing: crowdsourcing data from mobile smartphones in urban spaces. In: Hota, C., Srimani, P.K. (eds.) ICDCIT 2013. LNCS, vol. 7753, pp. 19–26. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  22. 22.
    Kersting, W.: Radial distribution test feeders. IEEE Trans. Power Syst. 6(3), 975–985 (1991)CrossRefGoogle Scholar
  23. 23.
    Meehan, B.: Modeling Electric Distribution with GIS. Esri Press, Redlands (2013) Google Scholar
  24. 24.
    Nagel, H., Cichowski, R.R.: Systematische Netzplanung, 2nd edn. VDE Verlag (2008)Google Scholar
  25. 25.
    O’Hara, K.: Understanding geocaching practices and motivations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2008, pp. 1177–1186. ACM, New York (2008).
  26. 26.
    Pacific Northwestern National Laborattories: Modern Grid Initiative Distribution Taxonomy Final Report. Technical report (2008)Google Scholar
  27. 27.
    Strunz, K., Fletcher, R., Campbell, R., Gao, F.: Developing benchmark models for low-voltage distribution feeders. In: Power Energy Society General Meeting, PES 2009, pp. 1–3. IEEE, July 2009Google Scholar
  28. 28.
    U.S. Department of Energy: Grid 2030: A National Vision for Electricity’s Second 100 Years (2003)Google Scholar
  29. 29.
    U.S. Department of Energy: 2014 Smart Grid System Report (2014)Google Scholar
  30. 30.
    Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • José Rivera
    • 1
    Email author
  • Christoph Goebel
    • 1
  • David Sardari
    • 1
  • Hans-Arno Jacobsen
    • 1
  1. 1.Department of Computer ScienceTechnische Universität München (TUM)MunichGermany

Personalised recommendations