Building MD Analytical Stars Using a Visual Linked Data Query Builder

  • Victoria NebotEmail author
  • Rafael Berlanga
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 553)


In this paper we present the foundations and a prototype tool for Linked Data (ld) analysis and visualization. The goal is to provide users with a tool enabling them to easily analyze Linked Data without knowledge of the SPARQL query language. The success of the multidimensional (md) model for data analysis has been mainly due to its simplicity. The md model views data in terms of dimensions and measures. Therefore, we propose the notion of md analytical stars as the foundation to query ld. These stars are md conceptual patterns that summarize ld (i.e., dimensions and measures). We have developed a tool that enables the user to graphically build md analytical stars as queries by suggesting possible dimensions and measures from a ld set. The query is automatically translated to SPARQL and executed. Visualization of results as charts, tables, etc. is performed using web-based technologies. We show the prototype tool and a running example.


Linked Data RDF Multidimensional models Linked data querying 



The work has been partially funded by the CICYT project TIN2011-24147 from the Spanish Ministry of Economy and Competitiveness (MINECO). We would like to thank Iván Posilio for his truly involvement in the development of the prototype.


  1. 1.
    Alzogbi, A., Lausen, G.: Similar structures inside RDF-graphs. In: LDOW. CEUR Workshop Proceedings, vol. 996 (2013)Google Scholar
  2. 2.
    Araújo, S., Schwabe, D.: Explorator: a tool for exploring RDF data through direct manipulation. In: LDOW. CEUR Workshop Proceedings, vol. 538 (2009)Google Scholar
  3. 3.
    Auer, S., Lehmann, J.: What have Innsbruck and Leipzig in common? Extracting semantics from Wiki content. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 503–517. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  4. 4.
    Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer, A., Sheets, D.: Tabulator: exploring and analyzing linked data on the semantic Web. In: Proceedings of the 3rd International Semantic Web User Interaction (2006)Google Scholar
  5. 5.
    Dadzie, A., Rowe, M.: Approaches to visualising linked data: a survey. Semant. Web 2(2), 89–124 (2011)Google Scholar
  6. 6.
    Etcheverry, L., Vaisman, A.A.: Enhancing OLAP analysis with Web cubes. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 469–483. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  7. 7.
    Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers, San Rafael (2011) Google Scholar
  8. 8.
    Heim, P., Lohmann, S., Stegemann, T.: Interactive relationship discovery via the semantic Web. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 303–317. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  9. 9.
    Kämpgen, B., Harth, A.: Transforming statistical linked data for use in OLAP systems. In: I-SEMANTICS 2011, Graz, Austria, 7–9 September 2011. ACM International Conference on Proceedings Series, pp. 33–40 (2011)Google Scholar
  10. 10.
    Khatchadourian, S., Consens, M.P.: ExpLOD: summary-based exploration of interlinking and RDF usage in the linked open data cloud. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 272–287. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  11. 11.
    Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. Wiley, New York (2011)Google Scholar
  12. 12.
    Klímek, J., Helmich, J., Nečaský, M.: Payola: collaborative linked data analysis and visualization framework. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 147–151. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts and abstract syntax (2004).
  14. 14.
    Nebot, V., Berlanga, R.: Building data warehouses with semantic Web data. Decis. Support Syst. 52(4), 853–868 (2012)CrossRefGoogle Scholar
  15. 15.
    Nebot, V., Berlanga, R.: Towards analytical MD stars from linked data. In: Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (KDIR 2014), KDIR 2014, pp. 117–125 (2014)Google Scholar
  16. 16.
    Prudhommeaux, E., Seaborne, A.: SPARQL query language for RDF (2008).
  17. 17.
    Schraefel, M.C., Shadbolt, N.R., Gibbins, N., Harris, S., Glaser, H.: CS AKTive space: representing computer science in the semantic Web. In: WWW, pp. 384–392. ACM, New York (2004)Google Scholar
  18. 18.
    Stadler, C., Lehmann, J., Höffner, K., Auer, S.: LinkedGeoData: a core for a Web of spatial open data. Semant. Web J. 3(4), 333–354 (2012)Google Scholar
  19. 19.
    Zviedris, M., Barzdins, G.: ViziQuer: a tool to explore and query SPARQL endpoints. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 441–445. Springer, Heidelberg (2011) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Computer Languages and SystemsUniversitat Jaume ICastellónSpain

Personalised recommendations