Skip to main content

Harper-Hofstadter Model and Spin Hall Effect

  • Chapter
  • First Online:
  • 1513 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A natural extension of the method described in the previous chapter consists in replacing the staggered optical potential with a linear one. This gives rise to a uniform flux distribution \(\Phi = \pi /2\), which is described by the famous Harper-Hofstadter Hamiltonian. By exploiting an additional pseudo-spin degree of freedom the setup further implements the time-reversal symmetric Hamiltonian underlying the quantum spin Hall effect. This led to the first experimental observation of the spin-Hall effect in an optical lattice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, I. Bloch, Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011)

    Article  ADS  Google Scholar 

  2. M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013)

    Article  ADS  Google Scholar 

  3. M.Y. Azbel. Energy spectrum of a conduction electron in a magnetic field. JETP 19 (1964)

    Google Scholar 

  4. P.G. Harper, Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. A 68, 874 (1955)

    Article  ADS  MATH  Google Scholar 

  5. D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976)

    Article  ADS  Google Scholar 

  6. H. Miyake, G.A. Siviloglou, C.J. Kennedy, W.C. Burton, W. Ketterle, Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013)

    Article  ADS  Google Scholar 

  7. C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  8. B.A. Bernevig, S.-C. Zhang, Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006)

    Article  ADS  Google Scholar 

  9. N. Goldman, I. Satija, P. Nikolic, A. Bermudez, M.A. Martin-Delgado, M. Lewenstein, I.B. Spielman, Realistic time-reversal invariant topological insulators with neutral atoms. Phys. Rev. Lett. 105, 255302 (2010)

    Article  ADS  Google Scholar 

  10. M.C. Beeler, R.A. Williams, K. Jiménez-García, L.J. LeBlanc, A.R. Perry, I.B. Spielman, The spin Hall effect in a quantum gas. Nature 498, 201–204 (2013)

    Article  ADS  Google Scholar 

  11. R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000)

    Article  ADS  Google Scholar 

  12. K. Osterloh, M. Baig, L. Santos, P. Zoller, M. Lewenstein, Cold atoms in non-abelian gauge potentials: from the Hofstadter “moth” to lattice gauge theory. Phys. Rev. Lett. 95, 010403 (2005)

    Article  ADS  Google Scholar 

  13. J. Ruseckas, G. Juzeliūnas, P. Öhberg, M. Fleischhauer, Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. Phys. Rev. Lett. 95, 010404 (2005)

    Article  ADS  Google Scholar 

  14. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  Google Scholar 

  15. M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, I. Bloch, Experimental realization of strong effective magnetic fields in optical superlattice potentials. Appl. Phys. B 113, 1–11 (2013)

    Article  ADS  Google Scholar 

  16. Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004)

    Article  ADS  Google Scholar 

  17. J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Aidelsburger .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aidelsburger, M. (2016). Harper-Hofstadter Model and Spin Hall Effect. In: Artificial Gauge Fields with Ultracold Atoms in Optical Lattices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-25829-4_6

Download citation

Publish with us

Policies and ethics