Advertisement

Square Lattice with Magnetic Field

  • Monika AidelsburgerEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Electrons moving in a periodic potential experience a quantized energy spectrum, where the discrete energy bands are known as Bloch bands. In a magnetic field the spectrum further splits into highly degenerate Landau levels. The interplay between both effects leads to a complex fractal energy spectrum known as Hofstadter’s butterfly. This chapter provides an introduction into the theoretical description of the system in the absence of interactions in terms of magnetic translation symmetries. The topological properties of the system are further discussed in terms of topological invariants, the Chern numbers, which are directly related to the quantization of the Hall conductivity.

Keywords

Diophantine Equation Hall Conductance Landau Gauge Chern Number Lattice Unit Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    C.R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K.L. Shepard, J. Hone, P. Kim, Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013)Google Scholar
  3. 3.
    L.A. Ponomarenko, R.V. Gorbachev, G.L. Yu, D.C. Elias, R. Jalil, A.A. Patel, A. Mishchenko, A.S. Mayorov, C.R. Woods, J.R. Wallbank, M. Mucha-Kruczynski, B.A. Piot, M. Potemski, I.V. Grigorieva, K.S. Novoselov, F. Guinea, V.I. Fal’ko, A.K. Geim, Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, R.C. Ashoori, Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013)Google Scholar
  5. 5.
    M. Hafezi, S. Mittal, J. Fan, A. Migdall, J.M. Taylor, Imaging topological edge states in silicon photonics. Nature Photonics 7, 1001–1005 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Photonic Floquet topological insulators. Nature 496, 196–200 (2013)Google Scholar
  7. 7.
    M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Realization of the hofstadter hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    H. Miyake, G.A. Siviloglou, C.J. Kennedy, W.C. Burton, W. Ketterle, Realizing the harper hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. Lond. 276, 238–257 (1963)ADSCrossRefGoogle Scholar
  11. 11.
    N. Ashcroft, N. Mermin, Solid State Physics (Harcourt Brace College Publishers, Fort Worth, 1976)zbMATHGoogle Scholar
  12. 12.
    C. Kittel, Introduction to Solid State Physics (Wiley, Philadelphia, 2004)zbMATHGoogle Scholar
  13. 13.
    R. Peierls, Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys. 80, 763–791 (1933)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    E. Brown, Bloch electrons in a uniform magnetic field. Phys. Rev. 133, A1038–A1044 (1964)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Zak, Magnetic translation group. Phys. Rev. 134, A1602–A1606 (1964)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    J. Zak, Magnetic translation group II. irreducible representations. Phys. Rev. 134, A1607–A1611 (1964)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    B.A. Bernevig, Topological Insulators and Topological Superconductors. (Princeton University Press, Princeton, 2013)Google Scholar
  18. 18.
    M.Y. Azbel,Energy spectrum of a conduction electron in a magnetic field. JETP 19 (1964)Google Scholar
  19. 19.
    P.G. Harper, Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. A 68, 874 (1955)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    N. Nemec, G. Cuniberti, Hofstadter butterflies of bilayer graphene. Phys. Rev. B 75, 201404 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    R. Bistritzer, A.H. MacDonald, Moiré butterflies in twisted bilayer graphene. Phys. Rev. B 84, 035440 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    T. Hatakeyama, H. Kamimura, Electronic properties of a Penrose tiling lattice in a magnetic field. Solid State Commun. 62, 79–83 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    D. Xiao, M.-C. Chang, Q. Niu, Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Y. Hatsugai, Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Y. Hatsugai, Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function. Phys. Rev. B 48, 11851–11862 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    X.-L. Qi, Y.-S. Wu, S.-C. Zhang, General theorem relating the bulk topological number to edge states in two-dimensional insulators. Phys. Rev. B 74, 045125 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J.T. Barreiro, S. Nascimbène, N.R. Cooper, I. Bloch, N. Goldman, Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nature Phys. 11, 162–166 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    A.H. MacDonald, Landau-level subband structure of electrons on a square lattice. Phys. Rev. B 28, 6713–6717 (1983)ADSCrossRefGoogle Scholar
  31. 31.
    G.H. Wannier, A result not dependent on rationality for bloch electrons in a magnetic field. Phys. Stat. Sol. B 88, 757–765 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    P. Streda, Quantised hall effect in a two-dimensional periodic potential. J. Phys. C: Solid State Phys. 15, L1299 (1982)ADSCrossRefGoogle Scholar
  33. 33.
    M. Kohmoto, Zero modes and the quantized Hall conductance of the two-dimensional lattice in a magnetic field. Phys. Rev. B 39, 11943–11949 (1989)ADSCrossRefGoogle Scholar
  34. 34.
    T. Fukui, Y. Hatsugai, H. Suzuki, Chern numbers in discretized brillouin zone: efficient method of computing (Spin) hall conductances. J. Phys. Soc. Jpn. 74, 1674–1677 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Ludwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations