Skip to main content

Simulation Testbed for Autonomic Demand-Responsive Mobility Systems

  • Chapter
  • First Online:
Autonomic Road Transport Support Systems

Part of the book series: Autonomic Systems ((ASYS))

Abstract

In this chapter, we describe an open-source simulation testbed for emerging autonomic mobility systems, in which transport vehicles and other resources are automatically managed to serve a dynamically changing transport demand. The testbed is designed for testing and evaluation of various planning, coordination and resource allocation mechanisms for the control and management of autonomic mobility systems. It supports all stages of the experimentation process, from the implementation of tested control mechanisms and the definition of experiment scenarios through simulation execution up to the analysis and interpretation of the results. The testbed aims to accelerate the development of control mechanisms for autonomic mobility systems and to facilitate their mutual comparison using well-defined benchmark scenarios. We also demonstrate how it can be used to select the most suitable control mechanism for a specific use case and to approximate operational costs and initial investments needed to deploy a specific autonomic mobility system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://github.com/agents4its/mobilitytestbed/.

  2. 2.

    http://agentpolis.org.

  3. 3.

    http://www.anylogic.com.

  4. 4.

    http://www.matsim.org.

  5. 5.

    http://www.sumo-sim.org.

  6. 6.

    This section provides a high-level overview of testbed’s usage. More detailed tutorial can be found at http://github.com/agents4its/mobilitytestbed/wiki.

  7. 7.

    http://openstreetmap.org/.

  8. 8.

    JavaScript Object Notation (JSON): http://json.org/.

  9. 9.

    http://earth.google.com/.

  10. 10.

    http://developers.google.com/kml/.

  11. 11.

    Another use case for the testbed can be found in [6], where we compared standard taxi and taxi-sharing service in Sydney, Australia.

  12. 12.

    Users are free to define their own location-specific temporal distributions of requests based on historical data or empiric knowledge. Also, since version 2.0., the testbed’s benchmark generator can use the density of certain points of interest within OSM map to distribute requests in space.

References

  1. Agatz, N., Erera, A.L., Savelsbergh, M.W., Wang, X.: Dynamic ride-sharing: a simulation study in metro Atlanta. Proc. Soc. Behav. Sci. 17, 532–550 (2011). Papers selected for the 19th International Symposium on Transportation and Traffic Theory

    Google Scholar 

  2. Attanasio, A., Cordeau, J.-F., Ghiani, G., Laporte, G.: Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Comput. 30(3), 377–387 (2004)

    Article  Google Scholar 

  3. Bailey Jr., W.A., Clark Jr., T.D.: A simulation analysis of demand and fleet size effects on taxicab service rates. In: Proceedings of the 19th Conference on Winter Simulation, pp. 838–844. ACM, New York (1987)

    Google Scholar 

  4. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M., et al.: Discrete-Event System Simulation. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  5. Bodin, L., Golden, B.: Classification in vehicle routing and scheduling. Networks 11(2), 97–108 (1981)

    Article  Google Scholar 

  6. Čertický, M., Jakob, M., Píbil, R.: Analyzing on-demand mobility services by agent-based simulation. J. Ubiquitous Syst. Pervasive Netw. 6(1), 17–26 (2015)

    Google Scholar 

  7. Cheng, S.-F., Nguyen, T.D.: Taxisim: a multiagent simulation platform for evaluating taxi fleet operations. In: Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Volume 02, pp. 14–21 (2011)

    Google Scholar 

  8. de Dios Ortuzar, J., Willumsen, L.G.: Modelling Transport. Wiley, New Jersey (1994)

    Google Scholar 

  9. Deflorio, F.P., Dalla Chiara, B., Murro, A., SpA, M.A.: Simulation and performance of DRTS in a realistic environment. In: Proceedings of 9th Meeting EWGT on Intermodality, Sustainability and ITS/13th Mini EURO Conference on Handling Uncertainty in the Analysis of Traffic and Transportation Systems (2002)

    Google Scholar 

  10. Diana, M.: The importance of information flows temporal attributes for the efficient scheduling of dynamic demand responsive transport services. J. Adv. Transp. 40(1), 23–46 (2006)

    Article  Google Scholar 

  11. d’Orey, P.M., Fernandes, R., Ferreira, M.: Empirical evaluation of a dynamic and distributed taxi-sharing system. In: Proceedings of ITSC 2012, pp. 140–146. IEEE, Anchorage (2012)

    Google Scholar 

  12. Drewe, P.: What about time in urban planning & design in the ICT age. In: Proceedings of the CORP Conference (2005)

    Google Scholar 

  13. Edwards, D., Elangovan, A., Watkins, K.: Reaching low-density urban areas with the network-inspired transportation system. In: 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2012, pp. 826–831. IEEE, Anchorage (2012)

    Google Scholar 

  14. Fu, L.: A simulation model for evaluating advanced dial-a-ride paratransit systems. Transp. Res. A Policy Pract. 36(4), 291–307 (2002)

    Article  Google Scholar 

  15. Geoffrion, A.M.: The purpose of mathematical programming is insight, not numbers. Interfaces 7(1), 81–92 (1976)

    Article  Google Scholar 

  16. Haghani, A., Banihashemi, M.: Heuristic approaches for solving large-scale bus transit vehicle scheduling problem with route time constraints. Transp. Res. A Policy Pract. 36(4), 309–333 (2002)

    Article  Google Scholar 

  17. Hall, R.W.: Discrete models/continuous models. Omega 14(3), 213–220 (1986)

    Article  Google Scholar 

  18. Hauptmeier, D., Krumke, S.O., Rambau, J.: The online dial-a-ride problem under reasonable load. In: Proceedings of the 4th Italian Conference on Algorithms and Complexity, CIAC ’00, pp. 125–136. Springer, London (2000)

    Google Scholar 

  19. Horn, M.: Multi-modal and demand-responsive passenger transport systems: a modelling framework with embedded control systems. Transp. Res. A 36(2), 167–188 (2002)

    MathSciNet  Google Scholar 

  20. Jakob, M., Moler, Z.: Modular framework for simulation modelling of interaction-rich transport systems. In: Proceedings of ITSC 2013. IEEE, The Hague (2013)

    Google Scholar 

  21. Jlassi, J., Euchi, J., Chabchoub, H.: Dial-a-ride and emergency transportation problems in ambulance services. Comput. Sci. Eng. 2(3), 17–23 (2012)

    Article  Google Scholar 

  22. Kamar, E., Horvitz, E.: Collaboration and shared plans in the open world: studies of ridesharing. In: Proceedings of IJCAI 2009, vol. 9, p. 187 (2009)

    Google Scholar 

  23. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)

    Article  MathSciNet  Google Scholar 

  24. Klügl, F.: Agent-based simulation engineering. PhD thesis, Habilitation Thesis, University of Würzburg (2009)

    Google Scholar 

  25. Langevin, A., Mbaraga, P., Campbell, J.F.: Continuous approximation models in freight distribution: an overview. Transp. Res. B Methodol. 30(3), 163–188 (1996)

    Article  Google Scholar 

  26. Lioris, E., Cohen, G., de La Fortelle, A.: Overview of a dynamic evaluation of collective taxi systems providing an optimal performance. In: 2010 IEEE Intelligent Vehicles Symposium (IV), pp. 1110–1115. IEEE, San Diego (2010)

    Google Scholar 

  27. Lipmann, M., Lu, X., Paepe, W.E., Sitters, R.A., Stougie, L.: On-line dial-a-ride problems under a restricted information model. Algorithmica 40(4), 319–329 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pěchouček, M., Jakob, M., Novák, P.: Towards simulation-aided design of multi-agent systems. In: Programming Multi-Agent Systems, pp. 3–21. Springer, Heidelberg (2012)

    Google Scholar 

  29. Quadrifoglio, L., Dessouky, M.: Insertion heuristic for scheduling mobility allowance shuttle transit (MAST) services: sensitivity to service area. In: Computer-Aided Systems in Public Transport. Lecture Notes in Economics and Mathematical Systems, vol. 600. Springer, Heidelberg (2007)

    Google Scholar 

  30. Quadrifoglio, L., Dessouky, M.M., Ordóñez, F.: A simulation study of demand responsive transit system design. Transp. Res. A Policy Pract. 42(4), 718–737 (2008)

    Article  Google Scholar 

  31. Regan, A.C., Mahmassani, H.S., Jaillet, P.: Dynamic decision making for commercial fleet operations using real-time information. Transp. Res. Rec. J. Transp. Res. Board 1537(1), 91–97 (1996)

    Article  Google Scholar 

  32. Schuetz, S., Zimmermann, K., Nunzi, G., Schmid, S., Brunner, M.: Autonomic and decentralized management of wireless access networks. IEEE Trans. Netw. Serv. Manag. 4(2), 96–106 (2007)

    Article  Google Scholar 

  33. Shinoda, K., Noda, I., Ohta, M., Kumada, Y., Nakashima, H.: Is dial-a-ride bus reasonable in large scale towns? Evaluation of usability of dial-a-ride systems by simulation. In: Multi-agent for Mass User Support, pp. 105–119. Springer, Heidelberg (2004)

    Google Scholar 

  34. Stein, D.M.: Scheduling dial-a-ride transportation systems. Transp. Sci. 12(3), 232–249 (1978)

    Article  Google Scholar 

  35. Uhrmacher, A.M., Weyns, D.: Multi-Agent Systems: Simulation and Applications. CRC Press, Boca Raton (2010)

    Google Scholar 

  36. Wilson, N.H.M., Sussman, J., Goodman, L., Hignnet, B.: Simulation of a computer aided routing system (CARS). In: Proceedings of the Third Conference on Applications of Simulation, pp. 171–183. Winter Simulation Conference (1969)

    Google Scholar 

Download references

Acknowledgements

This work was funded by, Ministry of Education, Youth and Sports of Czech Republic (grants no. 7E12065 and LD12044) the Technology Agency of the Czech Republic (grant no. TE01020155) and by the European Union Seventh Framework Programme FP7/2007–2013 (grant agreement no. 289067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Čertický .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Čertický, M., Jakob, M., Píbil, R. (2016). Simulation Testbed for Autonomic Demand-Responsive Mobility Systems. In: McCluskey, T., Kotsialos, A., Müller, J., Klügl, F., Rana, O., Schumann, R. (eds) Autonomic Road Transport Support Systems. Autonomic Systems. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-25808-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25808-9_9

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-319-25806-5

  • Online ISBN: 978-3-319-25808-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics