An Organic Computing Approach to Resilient Traffic Management

  • Matthias Sommer
  • Sven Tomforde
  • Jörg Hähner
Part of the Autonomic Systems book series (ASYS)


Growing cities and the increasing number of vehicles per inhabitant lead to a higher volume of traffic in urban road networks. As space is limited and the extension of existing road infrastructure is expensive, the construction of new roads is not always an option. Therefore, it is necessary to optimise the urban road network to reduce the negative effects of traffic, for example, pollution emission and fuel consumption. Urban road networks are characterised by their large number of signalised intersections. Until now, the optimisation of these signalisations is mostly done manually through traffic engineers. As urban traffic demands tend to change constantly, it is almost impossible to foresee all runtime situations at design time. Hence, an approach is needed that is able to react adaptively at runtime to optimise signalisations of intersections according to the monitored situation. The resilient traffic management system offers a decentralised approach with communicating intersections, which are able to adapt their signalisation dynamically at runtime and establish progressive signal systems (PSS) to optimise traffic flows and the number of stops per vehicle.


Traffic Managament Resilience Organic Computing Forecasting 


  1. 1.
    Akçelik, R.: Traffic signals: capacity and timing analysis. Technical Report 123, Australian Road Research Board (1981)Google Scholar
  2. 2.
    Ando, Y., et al.: Pheromone model: application to traffic congestion prediction. In: Engineering Self-Organising Systems – Third International Workshop (ESOA 2005). Lecture Notes in Artificial Intelligence, vol. 3910, pp. 182–196. Springer, Berlin (2006)Google Scholar
  3. 3.
    Barceló, J.: GETRAM/AIMSUN: a software environment for microscopic traffic analysis. In: Proceedings of the Workshop on Next Generation Models for Traffic Analysis, Monitoring and Management, held in Tucson (USA) in Sept 2001 (2001)Google Scholar
  4. 4.
    Becker, C., Hähner, J., Tomforde, S.: Flexibility in organic systems - remarks on mechanisms for adapting system goals at runtime. In: Proceedings of ICINCO 2012, pp. 287–292 (2012)Google Scholar
  5. 5.
    Bielefeldt, C., Condie, H.: COSMOS – Congestion Management Strategies and Methods in Urban Sites. Final report, The MVA Consultancy (1999)Google Scholar
  6. 6.
    Burton, P., Eveleigh, H., Faber, O.: The UK demonstration of TMC – the final results and update on progress. In: Proceedings of 11th Conference on Road Transport Information and Control, pp. 9–14. IEEE, New York (2002)Google Scholar
  7. 7.
    Busch, F., Kruse, G.: MOTION for SITRAFFIC – a modern approach to urban traffic control. In: Proceedings of IEEE Conference on Intelligent Transportation Systems, pp. 61–64. IEEE, New York (2001)Google Scholar
  8. 8.
    Chrobok, R., Wahle, J., Schreckenberg, M.: Traffic forecast using simulations of large scale networks. In: Proceedings of IEEE Intelligent Transportation Systems Conference, pp. 434–439. IEEE, New York (2001)Google Scholar
  9. 9.
    Chrobok, R., Pottmeier, A., Marinosson, S., Schreckenberg, M.: On-line simulation and traffic forecast: applications and results. In: Internet and Multimedia Systems and Applications (IMSA 2002), pp. 113–118 (2002)Google Scholar
  10. 10.
    Chrobok, R., Kaumann, O., Wahle, J., Schreckenberg, M.: Different methods of traffic forecast based on real data. Eur. J. Oper. Res. 155(3), 558–568 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dijkstra, E.W.: Cooperating sequential processes. Technical Report EWD-123, Technische Universiteit Eindhoven (1965)Google Scholar
  12. 12.
    Howard, D., Roberts, S.C.: The prediction of journey times on motorways using genetic programming. In: Applications of Evolutionary Computing – EvoWorkshops 2002. Lecture Notes in Computer Science, vol. 2279, pp. 141–153. Springer, Berlin (2002)Google Scholar
  13. 13.
    Ishak, S., Alecsandru, C.: Optimizing traffic prediction performance of neural networks under various topological, input, and traffic condition settings. J. Transp. Eng. 130(4), 452–465 (2004)CrossRefGoogle Scholar
  14. 14.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36(1), 41–50 (2003)CrossRefGoogle Scholar
  15. 15.
    Mazur, F., Chrobok, R., Hafstein, S.F., Pottmeier, A., Schreckenberg, M.: Future of traffic information – online-simulation of a large scale freeway network. In: Proceedings of IADIS, pp. 665–672 (2004)Google Scholar
  16. 16.
    Müller-Schloer, C.: Organic Computing: on the feasibility of controlled emergence. In: CODES and ISSS 2004 Proceedings, 8–10 Sept 2004, pp. 2–5. ACM Press, New York (2004)Google Scholar
  17. 17.
    Parkanyi, E., Xie, C.: A complete review of incident detection algorithms and their deployment: what works and what doesn’t. Technical Report NETCR 37, New England Transp. Consortium, Storrs (2005)Google Scholar
  18. 18.
    Payne, H.J., Knobel, H.C.: Development and testing of incident detection algorithm. FHWA Report FHWA RD 76 21, vol. 3, Federal Highway Administration, US Department of Transportation, Washington DC (1976)Google Scholar
  19. 19.
    Payne, H.J., Tignor, S.C.: Freeway incident-detection algorithms based on decision trees with states. TRB Research Record 682, Transportation Research Board, Washington DC (1978)Google Scholar
  20. 20.
    Prothmann, H., Tomforde, S., Branke, J., Hähner, J., Müller-Schloer, C., Schmeck, H.: Organic traffic control. In: Organic Computing – A Paradigm Shift for Complex Systems, chapter 5.1, pp. 431–446. Birkhäuser, Basel (2011)Google Scholar
  21. 21.
    Prothmann, H., Schmeck, H., Tomforde, S., Lyda, J., Hähner, J., Müller-Schloer, C., Branke, J.: Decentralised route guidance in organic traffic control. In: Proceedings of SASO’11, pp. 219–220. IEEE, New York (2011)Google Scholar
  22. 22.
    Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic observer/controller architecture for organic computing. In: Beiträge zur Jahrestagung der Gesellschaft für Informatik 2006, pp. 112–119 (2006)Google Scholar
  23. 23.
    Robertson, D.I., Bretherton, R.D.: Optimizing networks of traffic signals in real time – the SCOOT method. IEEE Trans. Veh. Technol. 40(1), 11–15 (1991)CrossRefGoogle Scholar
  24. 24.
    Schmeck, H., Müller-Schloer, C.: A characterization of key properties of environment-mediated multiagent systems. In: Proceedings of EEMMAS 2007, pp. 17–38. Springer, Berlin/Heidelberg (2007)Google Scholar
  25. 25.
    Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., Richter, U.: Adaptivity and self-organization in organic computing systems. ACM Trans. Auton. Adapt. Syst. 5(3), 1–32 (2010)CrossRefGoogle Scholar
  26. 26.
    Sims, A.G., Dobinson, K.W.: The Sydney coordinated adaptive traffic (SCAT) system – philosophy and benefits. IEEE Trans. Veh. Technol. 29(2), 130–137 (1980)CrossRefGoogle Scholar
  27. 27.
    Sommer, M., Tomforde, S., Hähner, J.: Using a neural network for forecasting in an organic traffic control management system. In: Proceedings of ICAC ’13, International Workshop on Embedded Self-Organizing Systems (2013)Google Scholar
  28. 28.
    Sun, D., Benekohal, R.F., Waller, S.T.: Multiobjective traffic signal timing optimization using non-dominated sorting genetic algorithm. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 198–203 (2003)Google Scholar
  29. 29.
    Tanenbaum, A.: Computer Networks. Prentice Hall Professional Technical Reference, 4th edn. Prentice Hall, Upper Saddle River (2002)Google Scholar
  30. 30.
    Thancanamootoo, B., Bell, M.G.H.: Automatic detection of traffic incidents on a signal-controlled road network. Technical Report H7UNDT RR076, University of Newcastle upon Tyne, Department of Civil Engineering (1988)Google Scholar
  31. 31.
    Tomforde, S.: Runtime Adaptation of Technical Systems. Südwestdeutscher Verlag für Hochschulschriften (2012)Google Scholar
  32. 32.
    Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Müller-Schloer, C., Schmeck, H.: Possibilities and limitations of decentralised traffic control systems. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–9 (2010)Google Scholar
  33. 33.
    Webster, F.V.: Traffic signal settings. Road Research Technical Paper No. 39, Road Research Laboratory, published by HMSO (1958)Google Scholar
  34. 34.
    Wedde, H., Farooq, M.: Beehive: routing algorithms inspired by honey bee behavior. Künstl. Intell. 19(4), 18–24 (2005)Google Scholar
  35. 35.
    Wedde, H., et al.: Highly dynamic and adaptive traffic congestion avoidance in real-time inspired by honey bee behavior. In: Mobilität und Echtzeit – Fachtagung der GI-Fachgruppe Echtzeitsysteme, pp. 21–31. Springer, Berlin (2007)Google Scholar
  36. 36.
    Wegener, A., Hellbrück, H., Fischer, S., Hendriks, B., Schmidt, C., Fekete, S.: Designing a decentralized traffic information system – autonomos. In: Kommunikation in Verteilten Systemen (KiVS), Informatik aktuell, pp. 309–315. Springer, Berlin/Heidelberg (2009)Google Scholar
  37. 37.
    Wilson, S.W.: The genetic algorithm and simulated evolution. In: ALIFE, pp. 157–166 (1987)Google Scholar
  38. 38.
    Wilson, S.W.: Classifier fitness based on accuracy. Evol. Comput. 3(2), 149–175 (1995)CrossRefGoogle Scholar
  39. 39.
    Yasdi, R.: Prediction of road traffic using a neural network approach. Neural Comput. Appl. 8(2), 135–142 (1999)CrossRefGoogle Scholar
  40. 40.
    Lanzi, P.L.: Learning Classifier Systems, From Foundations to Applications. Lecture Notes in Computer Science, vol. 1813. Springer, Berlin (2000)Google Scholar
  41. 41.
    Hollnagel, E., Woods, D.D., Leveson, N.: Resilience Engineering: Concepts and Precepts. Ashgate Pub Co., Aldershot (2006)Google Scholar
  42. 42.
    Kaplan, E.: Understanding GPS: Principles and Applications. Artech House Inc., Norwood (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Organic Computing GroupUniversity of AugsburgAugsburgGermany

Personalised recommendations