Advertisement

Quantum-Dot Optical Amplifiers

  • Benjamin LingnauEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Semiconductor optical amplifiers (SOAs) are optoelectronic devices commonly used in optical data communication networks and signal processing. Semiconductor amplifiers are structurally similar to laser devices, with the difference lying in the absence of an optical cavity.

Keywords

Spontaneous Emission Semiconductor Optical Amplifier Optical Amplifier Pump Current Rabi Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, M. Sugawara, Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers. Phys. Status Solidi B 238, 301–304 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    T.W. Berg, J. Mørk, J.M. Hvam, Gain dynamics and saturation in semiconductor quantum dot amplifiers. New J. Phys. 6, 178 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    A.V. Uskov, E.P. O’Reilly, M. Lämmlin, N.N. Ledentsov, D. Bimberg, On gain saturation in quantum dot semiconductor optical amplifiers. Opt. Commun. 248, 211 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, M. Sugawara, Symmetric highly efficient (\(\sim 0 \)dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers. IEEE Photonics Technol. Lett. 14, 1139–1141 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    O. Qasaimeh, Theory of four-wave mixing wavelength conversion in quantum dot semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 16, 993–995 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    N. Majer, K. Lüdge, E. Schöll, Maxwell-bloch approach to four-wave mixing in quantum dot semiconductor optical amplifiers, in Proceedings of the 11th International Conference on Numerical Simulation of Optical Devices (NUSOD), Rome 2011, ed. by J. Piprek (2011), pp. 153–154Google Scholar
  7. 7.
    H. Schmeckebier, C. Meuer, D. Arsenijević, G. Fiol, C. Schmidt-Langhorst, C. Schubert, G. Eisenstein, D. Bimberg, Wide-range wavelength conversion of 40-Gb/s NRZ-DPSK signals using a 1.3-\(\mu \)m quantum-dot semiconductor optical amplifier. IEEE Photonics Technol. Lett. 24, 1163–1165 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, G. Eisenstein, Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 45, 240–248 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    C. Meuer, H. Schmeckebier, G. Fiol, D. Arsenijević, J. Kim, G. Eisenstein, D. Bimberg, Cross-gain modulation and four-wave mixing for wavelength conversion in undoped and p-doped 1.3-\(\mu \)m quantum dot semiconductor optical amplifiers. IEEE Photonics J. 2, 141–151 (2010)CrossRefGoogle Scholar
  10. 10.
    G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, Cross-gain modulation in quantum-dot SOA at 1550nm. IEEE J. Quantum Electron. 46, 1696–1703 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    A. Icsevgi, W.E. Lamb, Propagation of light pulses in a laser amplifier. Phys. Rev. 185, 517–545 (1969)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    E. Schöll, Dynamic theory of picosecond optical pulse shaping by gain-switched semiconductor laser amplifiers. IEEE J. Quantum Electron. 24, 435–442 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    H. Aghajanpour, V. Ahmadi, M. Razaghi, Ultra-short optical pulse shaping using semiconductor optical amplifier. Opt. Laser Technol. 41, 654–658 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    P. Borri, W. Langbein, J.M. Hvam, F. Heinrichsdorff, M.H. Mao, D. Bimberg, Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers. IEEE Photonics Technol. Lett. 12, 594–596 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    M. van der Poel, E. Gehrig, O. Hess, D. Birkedal, J.M. Hvam, Ultrafast gain dynamics in quantum-dot amplifiers: theoretical analysis and experimental investigations. IEEE J. Quantum Electron. 41, 1115–1123 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    M. Lämmlin, GaAs-based semiconductor optical amplifiers with quantum dots as an active medium. Ph.D. thesis, Technische Universität Berlin (2006)Google Scholar
  17. 17.
    S. Dommers, V.V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Lämmlin, D. Bimberg, Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier. Appl. Phys. Lett. 90, 033508 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    N. Majer, K. Lüdge, E. Schöll, Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers. Phys. Rev. B 82, 235301 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 99, 131102 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    C. Meuer, C. Schmidt-Langhorst, R. Bonk, H. Schmeckebier, D. Arsenijević, G. Fiol, A. Galperin, J. Leuthold, C. Schubert, D. Bimberg, 80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering. Opt. Express 19, 5134–5142 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Exciton relaxation and dephasing in quantum-dot amplifiers from room to cryogenic temperature. IEEE J. Sel. Top. Quantum Electron. 8, 984–991 (2002)CrossRefGoogle Scholar
  23. 23.
    T. Koprucki, A. Wilms, A. Knorr, U. Bandelow, Modeling of quantum dot lasers with microscopic treatment of Coulomb effects. Opt. Quantum Electron. 42, 777–783 (2011)CrossRefGoogle Scholar
  24. 24.
    T.H. Stievater, X. Li, D.G. Steel, D. Gammon, D.S. Katzer, D. Park, C. Piermarocchi, L.J. Sham, Rabi oscillations of excitons in single quantum dots. Phys. Rev. Lett. 87, 133603 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    H. Kamada, H. Gotoh, J. Temmyo, H. Ando, T. Takagahara, Exciton Rabi oscillation in single isolated quantum dots. Phys. Status Solidi A 190, 485–490 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots. Phys. Rev. B 66, 081306(R) (2002)ADSCrossRefGoogle Scholar
  27. 27.
    M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, U. Woggon, Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature. Nat. Commun. 4, 2953 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    A. Capua, O. Karni, G. Eisenstein, J.P. Reithmaier, Rabi oscillations in a room-temperature quantum dash semiconductor optical amplifier. Phys. Rev. B 90, 045305 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R.L. Sellin, D. Ouyang, D. Bimberg, Self-induced transparency in InGaAs quantum-dot waveguides. Appl. Phys. Lett. 83, 3668–3670 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    T.W. Berg, J. Mørk, Quantum dot amplifiers with high output power and low noise. Appl. Phys. Lett. 82, 3083–3085 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    S.B. Kuntze, A.J. Zilkie, L. Pavel, J.S. Aitchison, Nonlinear state-space model of semiconductor optical amplifiers with gain compression for system design and analysis. J. Lightwave Technol. 26, 2274–2281 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    T. Erneux, E.A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, J. Houlihan, The fast recovery dynamics of a quantum dot semiconductor optical amplifier. Appl. Phys. Lett. 94, 113501 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vettering, Numerical Recipes, 3rd edn. (Cambridge University Press, Cambridge, 2007)Google Scholar
  34. 34.
    M. Radziunas, Numerical bifurcation analysis of the traveling wave model of multisection semiconductor lasers. Phys. D 213, 98–112 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    M. Rossetti, P. Bardella, I. Montrosset, Time-domain travelling-wave model for quantum dot passively mode-locked lasers. IEEE J. Quantum Electron. 47, 139 (2011)CrossRefGoogle Scholar
  36. 36.
    M. Rossetti, P. Bardella, I. Montrosset, Modeling passive mode-locking in quantum dot lasers: a comparison between a finite- difference traveling-wave model and a delayed differential equation approach. IEEE J. Quantum Electron. 47, 569 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    J. Javaloyes, S. Balle, Multimode dynamics in bidirectional laser cavities by folding space into time delay. Opt. Express 20, 8496–8502 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    E. Schöll, M. Schell, Theory of ultrashort pulse generation and amplification by gain-switched semiconductor lasers. Phys. Status Solidi B 150, 575–579 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    M. Schell, E. Schöll, Time-dependent simulation of a semiconductor laser amplifier: pulse compression in a ring configuration and dynamic optical bistability. IEEE J. Quantum Electron. 26, 1003–1005 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    W.C.W. Fang, C.G. Bethea, Y.K. Chen, S.L. Chuang, Longitudinal spatial inhomogeneities in high-power semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 1, 117–128 (1995)CrossRefGoogle Scholar
  41. 41.
    J.N. Fehr, M.A. Dupertuis, T.P. Hessler, L. Kappei, D. Marti, F. Salleras, M.S. Nomura, B. Deveaud, J.-Y. Emery, B. Dagens, Hot phonons and Auger related carrier heating in semiconductor optical amplifiers. IEEE J. Quantum Electron. 38, 674 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    T.W. Berg, J. Mørk, Saturation and noise properties of quantum-dot optical amplifiers. IEEE J. Quantum Electron. 40, 1527–1539 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    A.M. de Melo, K. Petermann, On the amplified spontaneous emission noise modeling of semiconductor optical amplifiers. Opt. Commun. 281, 4598–4605 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    P. Baveja, D. Maywar, A. Kaplan, G.P. Agrawal, Self-phase modulation in semiconductor optical amplifiers: impact of amplified spontaneous emission. IEEE J. Quantum Electron. 46, 1396–1403 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    C. Meuer, J. Kim, M. Lämmlin, S. Liebich, A. Capua, G. Eisenstein, A.R. Kovsh, S.S. Mikhrin, I.L. Krestnikov, D. Bimberg, Static gain saturation in quantum dot semiconductor optical amplifiers. Opt. Express 16, 8269 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    C.W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1985)Google Scholar
  47. 47.
    S. Wilkinson, B. Lingnau, J. Korn, E. Schöll, K. Lüdge, Influence of noise on the signal properties of quantum-dot semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron. 19, 1900106 (2013)CrossRefGoogle Scholar
  48. 48.
    B. Lingnau, E. Schöll, K. Lüdge, Ground and excited-state performance of a quantum-dot semiconductor amplifier, in Proceedings of the 14th International Conference on Numerical Simulation of Optoelectronic Devices (IEEE Photonics Society, 2014), pp. 121–122Google Scholar
  49. 49.
    R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, J. Leuthold, The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications. IEEE Photonics J. 3, 1039–1053 (2011)CrossRefGoogle Scholar
  50. 50.
    E. Schöll, Modelling of devices for optoelectronic applications: the quantum confined Stark effect and self-electrooptic effect devices. Turk. J. Phys. 23, 635 (1999)Google Scholar
  51. 51.
    P. Jin, C.M. Li, Z.Y. Zhang, F.Q. Liu, Y.H. Chen, X.L. Ye, B. Xu, Z.G. Wang, Quantum-confined stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots. Appl. Phys. Lett. 85, 2791 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    H.H. Nilsson, J.Z. Zhang, I. Galbraith, Homogeneous broadening in quantum dots due to Auger scattering with wetting layer carriers. Phys. Rev. B 72, 205331 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    M. Lorke, T.R. Nielsen, J. Seebeck, P. Gartner, F. Jahnke, Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems. Phys. Rev. B 73, 085324 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    E. Goldmann, M. Lorke, T. Frauenheim, F. Jahnke, Negative differential gain in quantum dot systems: Interplay of structural properties and many-body effects. Appl. Phys. Lett. 104, 242108 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    M. Lorke, J. Seebeck, T.R. Nielsen, P. Gartner, F. Jahnke, Excitation dependence of the homogeneous linewidths in quantum dots. Phys. Status Solidi C 3, 2393–2396 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    H. Haug, S.W. Koch, Semiconductor laser theory with many-body effects. Phys. Rev. A 39, 1887 (1989)ADSCrossRefGoogle Scholar
  57. 57.
    W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999)CrossRefzbMATHGoogle Scholar
  58. 58.
    H.C. Schneider, W.W. Chow, S.W. Koch, Many-body effects in the gain spectra of highly excited quantum dot lasers. Phys. Rev. B 64, 115315 (2001)ADSCrossRefGoogle Scholar
  59. 59.
    W.W. Chow, S.W. Koch, Theory of semiconductor quantum-dot laser dynamics. IEEE J. Quantum Electron. 41, 495–505 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    B. Lingnau, K. Lüdge, E. Schöll, W.W. Chow, Many-body and nonequilibrium effects on relaxation oscillations in a quantum-dot microcavity laser. Appl. Phys. Lett. 97, 111102 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    I. O’Driscoll, M. Hutchings, P.M. Smowton, P. Blood, Many-body effects in InAs/GaAs quantum dot laser structures. Appl. Phys. Lett. 97, 141102 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    H. Shahid, D. Childs, B.J. Stevens, R.A. Hogg, Negative differential gain due to many body effects in self-assembled quantum dot lasers. Appl. Phys. Lett. 99, 061104 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    I.J. Guerrero Moreno, T.V. Torchynska, J.L. Casas Espinola, Photoluminescence variation in InAs quantum dots embedded in InGaAs/AlGaAs quantum wells at thermal annealing. Phys. E 51, 37–41 (2013)Google Scholar
  64. 64.
    F. Franchello, L.D. de Souza, E. Laureto, A.A. Quivy, I.F.L. Dias, Influence of bimodal distribution and excited state emission on photoluminescence spectra of InAs self-assembled quantum dots. J. Lumin. 137, 22–27 (2013)CrossRefGoogle Scholar
  65. 65.
    M. Lämmlin, G. Fiol, C. Meuer, M. Kuntz, F. Hopfer, A.R. Kovsh, N.N. Ledentsov, D. Bimberg, Distortion-free optical amplification of 20–80 GHz modelocked laser pulses at \(1.3 \mu m\) using quantum dots. Electron. Lett. 42, 697 (2006)CrossRefGoogle Scholar
  66. 66.
    S. Schneider, P. Borri, W. Langbein, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Excited-state gain dynamics in InGaAs quantum-dot amplifiers. IEEE Photonics Technol. Lett. 17, 2014–2016 (2005)ADSCrossRefGoogle Scholar
  67. 67.
    J. Kim, M. Lämmlin, C. Meuer, D. Bimberg, G. Eisenstein, Static gain saturation model of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 44, 658 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    N.A. Olsson, Lightwave systems with optical amplifiers. J. Lightwave Technol. 7, 1071 (1989)ADSCrossRefGoogle Scholar
  69. 69.
    M. Wegert, N. Majer, K. Lüdge, S. Dommers-Völkel, J. Gomis-Bresco, A. Knorr, U. Woggon, E. Schöll, Nonlinear gain dynamics of quantum dot optical amplifiers. Semicond. Sci. Technol. 26, 014008 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    H. Schmeckebier, B. Lingnau, S. König, K. Lüdge, C. Meuer, A. Zeghuzi, D. Arsenijević, M. Stubenrauch, R. Bonk, C. Koos, C. Schubert, T. Pfeiffer, D. Bimberg, Ultra-broadband bidirectional dual-band quantum-dot semiconductor optical amplifier. Opt. Fiber Commun. Conf. Expos. Tu3I.7 (2015)Google Scholar
  71. 71.
    E.S. Fry, X. Li, D. Nikonov, G.G. Padmabandu, M.O. Scully, A.V. Smith, F.K. Tittel, C. Wang, S.R. Wilkinson, S.Y. Zhu, Atomic coherence effects within the sodium D\(_1\) line: lasing without inversion via population trapping. Phys. Rev. Lett. 70, 3235–3238 (1993)ADSCrossRefGoogle Scholar
  72. 72.
    M.O. Scully, Quantum Optics (Cambridge University Press, Cambridge, 1997)Google Scholar
  73. 73.
    D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)ADSCrossRefGoogle Scholar
  74. 74.
    C. Brif, R. Chakrabarti, H. Rabitz, Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    W.W. Chow, H.C. Schneider, M.C. Phillips, Theory of quantum-coherence phenomena in semiconductor quantum dots. Phys. Rev. A 68, 053802 (2003)ADSCrossRefGoogle Scholar
  76. 76.
    K. El Sayed, L. Bányai, H. Haug, Coulomb quantum kinetics and optical dephasing on the femtosecond time scale. Phys. Rev. B 50, 1541–1550 (1994)ADSCrossRefGoogle Scholar
  77. 77.
    L. Schultheis, A. Honold, J. Kuhl, K. Köhler, C.W. Tu, Phase coherence and line broadening of free excitons in gaas quantum wells. Superlattices Microstruct. 2, 441–443 (1986)ADSCrossRefGoogle Scholar
  78. 78.
    X. Fan, T. Takagahara, J.E. Cunningham, H. Wang, Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells. Solid State Commun. 108, 857–861 (1998)ADSCrossRefGoogle Scholar
  79. 79.
    J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin, 1996)CrossRefGoogle Scholar
  80. 80.
    D. Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer, D. Park, Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87–90 (1996)ADSCrossRefGoogle Scholar
  81. 81.
    T. Brandes, Coherent and collective quantum optical effects in mesoscopic systems. Phys. Rep. 408, 315–474 (2005)ADSCrossRefGoogle Scholar
  82. 82.
    H. Choi, V.M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F.X. Kärtner, T.B. Norris, Ultrafast rabi flopping and coherent pulse propagation in a quantum cascade laser. Nat. Photonics 4, 706–710 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    M.O. Scully, S.Y. Zhu, A. Gavrielides, Degenerate quantum-beat laser: lasing without inversion and inversion without lasing. Phys. Rev. Lett. 62, 2813–2816 (1989)ADSCrossRefGoogle Scholar
  84. 84.
    S.E. Harris, Lasers without inversion: interference of lifetime-broadened resonances. Phys. Rev. Lett. 62, 1033–1036 (1989)ADSCrossRefGoogle Scholar
  85. 85.
    S.L. McCall, E.L. Hahn, Self-induced transparency. Phys. Rev. 183, 457–485 (1969)ADSCrossRefGoogle Scholar
  86. 86.
    K.J. Boller, A. Imamoglu, S.E. Harris, Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991)ADSCrossRefGoogle Scholar
  87. 87.
    S.E. Harris, Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)CrossRefGoogle Scholar
  88. 88.
    W.W. Chow, F. Jahnke, On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog. Quantum Electron. 37, 109–184 (2013)ADSCrossRefGoogle Scholar
  89. 89.
    K. Binder, The Monte Carlo Method in Condensed Matter Physics (Springer, Berlin, 1992)CrossRefGoogle Scholar
  90. 90.
    S.W. Koch, T. Meier, F. Jahnke, P. Thomas, Microscopic theory of optical dephasing in semiconductors. Appl. Phys. A 71, 511–517 (2000)ADSCrossRefGoogle Scholar
  91. 91.
    Q.T. Vu, H. Haug, S.W. Koch, Relaxation and dephasing quantum kinetics for a quantum dot in an optically excited quantum well. Phys. Rev. B 73, 205317 (2006)ADSCrossRefGoogle Scholar
  92. 92.
    M. Lorke, W.W. Chow, T.R. Nielsen, J. Seebeck, P. Gartner, F. Jahnke, Anomaly in the excitation dependence of the optical gain of semiconductor quantum dots. Phys. Rev. B 74, 035334 (2006)ADSCrossRefGoogle Scholar
  93. 93.
    J. Gomis-Bresco, S. Dommers, V.V. Temnov, U. Woggon, J. Martinez-Pastor, M. Lämmlin, D. Bimberg, InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers. IEEE J. Quantum Electron. 45, 1121–1128 (2009)ADSCrossRefGoogle Scholar
  94. 94.
    T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, J. Leuthold, Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Opt. Express 16, 170–178 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations