Skip to main content

The Prediction of Fatigue Using Speech as a Biosignal

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9449)

Abstract

Automatic systems for estimating operator fatigue have application in safety-critical environments. We develop and evaluate a system to detect fatigue from speech recordings collected from speakers kept awake over a 60-hour period. A binary classification system (fatigued/not-fatigued) based on time spent awake showed good discrimination, with 80 % unweighted accuracy using raw features, and 90 % with speaker-normalized features. We describe the data collection, feature analysis, machine learning and cross-validation used in the study. Results are promising for real-world applications in domains such as aerospace, transportation and mining where operators are in regular verbal communication as part of their normal working activities.

Keywords

  • Fatigue
  • Speech
  • Computational paralinguistics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25789-1_2
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-25789-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

References

  1. Dobbie, K.: Fatigue-related crashes: an analysis of fatigue-related crashes on Australian roads using an operational definition of fatigue. Australian transport safety bureau (OR23), (2002)

    Google Scholar 

  2. FMCSA: Regulatory impact analysis – hours of service final rule. Federal motor carrier safety administration, December 2011

    Google Scholar 

  3. Åkerstedt, T.: Consensus statement: Fatigue and accidents in transport operations. J. Sleep Res. 9, 395 (2000)

    CrossRef  Google Scholar 

  4. Rosekind, M., Gander, P., Miller, D., Gregory, K., Smith, R., Weldon, K., Co, E., McNally, K., Lebacqz, J.: Fatigue in operational settings: examples from the aviation environment. J. Hum. Factors. 36, 327–338 (1994)

    CrossRef  Google Scholar 

  5. Barr, L., Howarth, H., Popkin, S., Carroll, R.: A review and evaluation of emerging driver fatigue detection measures and technologies. John A. Volpe National Transportation Systems Center (2005)

    Google Scholar 

  6. Begum, S.: Intelligent driver monitoring systems based on physiological sensor signals: a review. In: IEEE Annual Conference on Intelligent Transportation Systems (ITSC) (2013)

    Google Scholar 

  7. Vogel, A., Fletcher, J., Maruff, P.: Acoustic analysis of the effects of sustained wakefulness on speech. J. Acoust. Soc. Am. 128, 3747–3756 (2010)

    CrossRef  Google Scholar 

  8. Schuller, B., Batliner, A., Steidl, S., Schiel, F., Zrajewski, F.: The Interspeech 2011 Speaker state challenge. In: Proceedings of Interspeech 2011, pp. 2301–2304 (2011)

    Google Scholar 

  9. Huang, D., Ge, S., Zhang, Z.: Speaker State Classification Based on Fusion of Asymmetric SIMPLS and Support Vector Machines. In: Proceedings of the Interspeech 2011, pp. 3301–3304 (2011)

    Google Scholar 

  10. Krajewski, J., Batliner, A., Golz, M.: Acoustic sleepiness detection: Framework and validation of a speech-adapted pattern recognition approach. Behav. Res. Methods 41, 795–804 (2009)

    CrossRef  Google Scholar 

  11. Kaida, K., Takahashi, M., Akerstedt, T., Nakata, A., Otsuka, Y., Haratani, T., Fukasawa, K.: Validation of the Karolinska sleepiness scale against performance and EEG variables. Clin. Neurophysiol. 117, 1574–1581 (2006)

    CrossRef  Google Scholar 

  12. Gillberg, M., Kecklund, G., Akerstedt, T.: Relations between performance and subjective ratings of sleepiness during a night awake. J. Sleep 17, 236–241 (1994)

    CrossRef  Google Scholar 

  13. Åhsberg, G., Kecklund, G., Åkerstedt, T., Gamberale, F.: Shiftwork and different dimensions of fatigue. Int. J. Ind. Ergon. 26, 457–465 (2000)

    CrossRef  Google Scholar 

  14. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    MATH  Google Scholar 

  15. Hsu, C., Chang, C., Lin, C.: A practical guide to support vector classification. Department of computer science technical report, National Taiwan University (2010)

    Google Scholar 

  16. Holte, R.: Very simple classification rules perform well. J. Mach. Learn. 11, 63–91 (1993)

    CrossRef  MATH  Google Scholar 

  17. Chen, S., Gopinath, R.: Gaussianization. In: Proceedings of the NIPS 2000, Denver Colorado (2000)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the European Space Agency and University College of London who are jointly responsible for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Huckvale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Baykaner, K., Huckvale, M., Whiteley, I., Ryumin, O., Andreeva, S. (2015). The Prediction of Fatigue Using Speech as a Biosignal. In: Dediu, AH., Martín-Vide, C., Vicsi, K. (eds) Statistical Language and Speech Processing. SLSP 2015. Lecture Notes in Computer Science(), vol 9449. Springer, Cham. https://doi.org/10.1007/978-3-319-25789-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25789-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25788-4

  • Online ISBN: 978-3-319-25789-1

  • eBook Packages: Computer ScienceComputer Science (R0)