Advertisement

Blood Disorders in the Elderly

  • Nages Nagaratnam
  • Kujan Nagaratnam
  • Gary Cheuk
Chapter
  • 1.8k Downloads

Abstract

Haematopoietic stem cells (HSCs) are responsible for the production and replenishment of blood cells of all types throughout life. The stem cell niches which are composed of stromal cells are vital for adult haematopoiesis. With increasing age the haematopoietic system undergoes substantial changes. With age there are striking changes in functional capacity and quantity of blood cells with decreased competence of the adaptive immune system, elevated incidence of age-associated anaemia and increased haematological malignancies. Anaemia is common in the elderly and its prevalence increases with age. About one-third have anaemia due to deficiencies in iron, folic acid and vitamin B12 and another third due to anaemia of chronic diseases, and the remaining is unexplained anaemia. An elderly presenting with iron deficiency is almost exclusively due to blood loss from the gastrointestinal tract. Many old people suffer from vitamin B12 deficiency. There are three groups of haematological neoplastic disorders in the elderly and increasing in incidence with advancing age, namely, myelodysplasia and acute myeloid leukaemia, multiple myeloma and chronic lymphatic leukaemia. The chronic myeloproliferative, chronic lymphoproliferative and immunoproliferative disorders are reviewed.

Keywords

Haematopoietic stem cells Haematopoiesis Stem cell niches Anaemia Haematological neoplastic disorders 

References

Haematopoiesis-Blood Cell Production

  1. 1.
    Zant GV, Liang Y. Concise review: haematopoietic stem cell aging, life span and transplantation. Stem Cells Transl Med. 2012;1:651–7.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Wagner W, Horn P, Bork S, Ho AD. Aging of hematopoietic stem cells is regulated by the stem cell niche. Exp Gerontol. 2008;43(11):974–80 (abstract).CrossRefPubMedGoogle Scholar
  3. 3.
    Arai F, Hirao A, Suda T. Regulation of hematopoiesis and its interaction with stem cell niches. Int J Hamatol. 2005;82(5):371–6 (abstract).CrossRefGoogle Scholar
  4. 4.
    Heissig B, Ohki Y, Sato Y, Rafii S, Werb Z, Hattori K. A role for niches in hematopoetic cell development. Hematology. 2005;10(3):247–53 (abstract).CrossRefPubMedGoogle Scholar
  5. 5.
    Nagasawa T, Omatsu Y, Sugiyama T. Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol. 2011;32(7):315–20 (abstract).CrossRefPubMedGoogle Scholar
  6. 6.
    Metcalf D. Hematopoietic cytokines. Blood. 2008;111(2):485–91 (abstract).PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Robb L. Cytokine receptors and haematopoietic differentiation. Oncogene. 2007;26:6715–23.CrossRefPubMedGoogle Scholar
  8. 8.
    Lieschke GJ. Granulocyte colony stimulating factor (G-CSF). Aust Prescriber. http://www.australianprescriber.com.magazine/17/4/96/9.2013. Accessed 22 Apr 2013.
  9. 9.
    Singh VK, Saini A, Chandra K. Role of erythropoietin and other growth factors in viva erythropoiesis. Advances in Regenerative Medicine. 2014(2014):Article ID 426520. 8 pages. http://dx.doi.org/10.11552014/426520.
  10. 10.
    Fleetwood AJ, Cook AD, Hamilton JA. Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol. 2005;25(5):405–28 (abstract).CrossRefPubMedGoogle Scholar
  11. 11.
    Hamilton JA, Anderson GP. GM-CSF biology. Growth Factors. 2004;22(4):225–31.CrossRefPubMedGoogle Scholar
  12. 12.
    Hedley BD, Allan AL, Xenocostas A. The role of erythropoietin and erythropoiesis-stimulating agents in tumor progression. Clin Cancer Res. 2011;17(20):6373–80 (abstract).CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang CC, Lodish HF. Cytokines regulating hematopoietic stem cell function. Curr Opin Hematol. 2008;15(4):307–11 (abstract).PubMedCentralCrossRefPubMedGoogle Scholar

Age-Related Changes in the Haematopoietic System

  1. 14.
    Beerman I, Maloney WJ, Weissman IL, Rossi DJ. Stem cells and the aging haematopoietic system. Curr Opin Immunol. 2010;22(4):500–6.CrossRefPubMedGoogle Scholar
  2. 15.
    Woolthuis CM, de Haan G, Huls G. Aging of haematopoietic stem cells: intrinsic changes or micro-environmental effects? Curr Opin Immunol. 2011;23:512–7 (abstract).CrossRefPubMedGoogle Scholar
  3. 16.
    Henry CJ, Marusyk A, DeGregon J. Aging-associated changers in hematopoiesis and leukemogenesis: what’s the connection? Aging (Albany NY). 2011;3(6):643–56 (abstract).Google Scholar
  4. 17.
    Dykstra B, de Haan G. Hematopoietic stem cell aging and self-renewal. Cell Tissue Res. 2008;331(1):91–101.CrossRefPubMedGoogle Scholar
  5. 18.
    Ergen AV, Goodell MA. Mechanisms of the haematopoietic stem cell aging. Exp Gerontol. 2010;45(4):286–90 (abstract).PubMedCentralCrossRefPubMedGoogle Scholar
  6. 19.
    Rothstein G. Disordered haematopoiesis and myelodysplasia in the elderly. J Am Geriatr Soc. 2003;51:22–6 (abstract).CrossRefGoogle Scholar
  7. 20.
    Nilsson-Ehle H, Jagenburg R, Landahl S, Svanborg A. Blood haemoglobin declines in the elderly: implication for reference intervals from age 70 to 88. Eur J Haematol. 2000;65:297–305.CrossRefPubMedGoogle Scholar
  8. 21.
    Warren LA, Rossi DJ. Stem cells and aging in the haematopoietic system. Mech Ageing Dev. 2006;130:46–53 (abstract).CrossRefGoogle Scholar
  9. 22.
    Gazil R, Weissman IL, Rossi DJ. Haematopoietic stem cells and aging haematopoietic system. Semin Hamatol. 2008;45(4):218–24.CrossRefGoogle Scholar

Anaemias

  1. 23.
    World Health Organisation. Haemoglobin concentration for the diagnosis of anaemia and assessment of severity. http://www.intvmnis/indicators/haemoglobin.pdf. Retrieved 17 Sept 2014.
  2. 24.
    Magarey M, Tiddy JA, Wilson PC, McCarthy PJ. Normal anthropometric and biochemical values for two groups of healthy males-war veterans and non-veterans. Aust J Nutr Diet. 1992;40:90–5.Google Scholar
  3. 25.
    Yip R, Johnson C, Dallman PR. Age-related changes in laboratory values used in the diagnosis of anemia and iron deficiency. Am J Clin Nutr. 1984;39:427.PubMedGoogle Scholar
  4. 26.
    Zakai NA, Katz R, Hirch C, Shlipak MG, Chaves PHM, Newman AM, et al. A prospective study of anaemia status, haemoglobin concentration and mortality in an elderly cohort: the Cardiovascular Health Study. Arch Intern Med. 2005;165:2214–20.CrossRefPubMedGoogle Scholar
  5. 27.
    Daly MP. Anaemia in the elderly. Am Fam Physician. 1989;39:129–36.PubMedGoogle Scholar
  6. 28.
    Salive ME, Cornoni-Huntley J, Guralnik JM, Philips CL, Wallace RB, Ostfeld AM, et al. Anaemia and haemoglobin levels in elderly persons: relationship with age, gender and health status. J Am Geriatr Soc. 1992;40:489–96.CrossRefPubMedGoogle Scholar
  7. 29.
    Guralnik JM, Eisenstaedt RS, Ferrucci L, Klein HG, Woodman RC. Prevalence of anaemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anaemia. Blood. 2004;104:2263–8.CrossRefPubMedGoogle Scholar
  8. 30.
    Spivak JL. Anaemia in the elderly: a growing health concern. CME. http://www.medscape.com/viewarticle/522647.
  9. 31.
    Gordon SR, Smith RE, Power GC. The role of endoscopy in the evaluation of iron deficiency anemia in patients over the age of 50 years. Gastroenterol. 1994;89:1963–7.Google Scholar
  10. 32.
    Rockey CD, Cello JP. Evaluation of the gastrointestinal tract in patients with iron deficiency anaemia. N Engl J Med. 1993;329:1691–5.CrossRefPubMedGoogle Scholar
  11. 33.
    Wynn M, Wynn A. The danger of B12 deficiency in the elderly. Nutr Health. 1998;12:215–26.CrossRefPubMedGoogle Scholar
  12. 34.
    Daharmarajan TS, Norkus EP. Vitamin B12 deficiency in the elderly-population based research. In: Herbert V, editor. Vitamin B12 deficiency. London: Royal Society of Medicine Press Ltd.; 1999:27–33.Google Scholar
  13. 35.
    Stabler SP, Lindenbaum J, Allen RH. Vitamin B12 deficiency in the elderly: current dilemmas. Am J Clin Nutr. 1997;66(4):741–9.PubMedGoogle Scholar
  14. 36.
    Dharmarajan TS, Ugalino JT, Kanagala M, Pitchuoni S, Norkus EP. Vitamin B12 status in hospitalized elderly from nursing homes and the community. J Am Med Dir Assoc. 1999;99(6):725–7.Google Scholar
  15. 37.
    Eggersten R. Prevalence and diagnosis of cobalamin deficiency in older people. J Am Geriatr Soc. 1996;44(10):1273–4.CrossRefPubMedGoogle Scholar
  16. 38.
    Lindenbaum J, Rosenberg IH, Wilson PW, Stabler SP, Allen RH. Prevalence of cobalamin deficiency in the Framingham elderly population. Am J Clin Nutr. 1994;60:2–11.PubMedGoogle Scholar
  17. 39.
    Allen LH, Casterline J. Vitamin B12 deficiency in the elderly individuals: diagnosis and requirements. Am J Clin Nutr. 1994;60:12–4.PubMedGoogle Scholar
  18. 40.
    Cooper BA, Castle WB. Sequential mechanisms in the enhanced absorption of vitamin B12 by intrinsic factor in rats. J Clin Invest. 1960;39:199–214.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 41.
    Feslen HP. Intrinsic factor secretion and cobalamin absorption. Physiology and pathophysiology in the gastrointestinal tract. Scand J Gastroeneterol Suppl. 1991;188:1–7.Google Scholar
  20. 42.
    Oh R, Brown DL. Vitamin B12 deficiency. Am Fam Physician. 2003;67(5):979–86.PubMedGoogle Scholar
  21. 43.
    Dharmarajan TS, Norkus EP. Approaches to vitamin B12 deficiency. Postgrad Med. 2001;110(1):99–105.CrossRefPubMedGoogle Scholar

Haematological Malignancies: Myelodysplastic Syndromes

  1. 44.
    Manoharan A, Brighton T, Gemmell R, Lopez K, Moran S, Kyle P. Platelet dysfunction in myelodysplastic syndromes: a clinicopathological study. Int J Hematol. 2002;76:272–8.CrossRefPubMedGoogle Scholar
  2. 45.
    Zhou J, Orazi A, Czader MB. Myelodysplastic syndromes. Semin Diagn Pathol. 2011;28(4):258–72 (abstract).CrossRefPubMedGoogle Scholar
  3. 46.
    Rollison DE, Howlader N, Smith MT, Strom SS, Merritt WD, Ries LA, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States 2001–2004, using data from the NAACCR and SEER programs. Blood. 2008;112:45–52.CrossRefPubMedGoogle Scholar
  4. 47.
    Guralnik JM, Eisenstaedt RS, Ferrucci L, Eisenstadt RS, Ferrucci L, Klein HG, et al. Prevalence of anaemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anaemia. Blood. 2004;104:2263–8.CrossRefPubMedGoogle Scholar
  5. 48.
    Saba HI. Myelodysplastic syndromes in the elderly: role of growth factors in management. Leuk Res. 1996;20(3):203–19 (abstract).CrossRefPubMedGoogle Scholar
  6. 49.
    Ria R, Moschetta A, Reale A, Mangialardi G, Castrovilli A, Vacca A, et al. Managing myelodysplastic symptoms in elderly patients. Clin Interv Aging. 2009;4:413–23.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 50.
    Schmitt-Graeff A, Mattern D, Kohler H, Hezel J, Lubbet M. Myelodysplastic syndromes(MDS): aspects of haematopathologic diagnosis. Pathologie. 2000;21(1):1–15.CrossRefGoogle Scholar
  8. 51.
    Flandrin G. Classification of myelodysplastic syndromes. Atlas Genet Cytogenet Oncol Haematol. 2002. URL. http://AtlasGeneticsOncology.org/Anomalies/ClassifMSSID1239.html.

Chronic Myeloid Leukaemia

  1. 52.
    Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altkruse SF, et al., editors. SEER Cancer Statistics Review 1975–2010. National Cancer Institute Bethesda MD http://seer.cancer.gov/csr/1975_2010. Based in November 2012. SEER data submission posted to the SEER website April 2013.
  2. 53.
    Kurzrock R, Kantarjian HM, Druker NJ, Talpaz M. Philadelphia chromosome –positive leukaemias from basic and molecular therapeutics. Ann Intern Med. 2003;138:819–30.CrossRefPubMedGoogle Scholar
  3. 54.
    Goldman JM, Melo TW. The molecular biology of chronic myeloid leukaemia. Blood. 2000;96(10):3343–56. (abstract).Google Scholar
  4. 55.
    Oscier DG. Atypical chronic myeloid leukaemia: a distinct clinical entity related to the myelodysplastic syndrome. Br J Haematol. 1996;92(3):582–6.CrossRefPubMedGoogle Scholar
  5. 56.
    Kurzrock R, Bueso-Ramos CE, Kantarijian H, Freirech M, Tucker SL, Siciliano M, et al. BCR rearrangement –negative chronic myelogenous leukaemia. Clin Oncol. 2001;19(11):2915–26.Google Scholar
  6. 57.
    Jabbour E, Cortes J, Kantarjian H. Long term outcomes in the second –line treatment of chronic myeloid leukaemia: a review of tyrosine kinase inhibitors. Cancer. 2011;117(5):897–906.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 58.
    Sawyers CL. Chronic myeloid leukaemia. N Engl J Med. 1999;340(17):1330–40.CrossRefPubMedGoogle Scholar

Polycythaemia Vera

  1. 59.
    Finazzi G, Barbul T. How I treat patients with polycythaemia vera. Blood. 2007;109(12):5104–11.CrossRefPubMedGoogle Scholar
  2. 60.
    Besa GC, Woermann V. Polycythaemia vera. http://www.emedicine.com/MED/topic1864.htm.
  3. 61.
    Prchal IF, Axelrad AA. Bone marrow responses in polycythaemia vera. N Engl J Med. 1974;290:1382.PubMedGoogle Scholar
  4. 62.
    Baxter FI, Scott IM, Campbell PI, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative diseases. Lancet. 2005;352:1054–61.CrossRefGoogle Scholar
  5. 63.
    Kralovics R, Passamonti F, Buser AS, Teo S, Tiedt PR, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.CrossRefPubMedGoogle Scholar

Essential Thrombocythaemia

  1. 64.
    Penninga EI, Bjerrum OW. Polycythaemia vera and thrombocythaemia: current treatment and strategies. Drugs. 2006;66(17):2173–87.CrossRefPubMedGoogle Scholar

Myelofibrosis and Myeloid Metaplasia

  1. 65.
    Tefferi A. Myelofibrosis and myeloid metaplasia. N Engl J Med. 2000;342(17):1255–64.CrossRefPubMedGoogle Scholar
  2. 66.
    Kvasnicka HM, Thiele J, Werden C, Zankovich R, Diehl V, Fischer R. Prognostic factors in idiopathic (primary) osteomyelofibrosis. Cancer. 1997;80:707–19.CrossRefGoogle Scholar
  3. 67.
    Ward HP, Block MH. The natural history of agnogenic myeloid metaplasia (AMM) and a critical evaluation of its relationship with the myeloproliferative syndrome. Medicine (Baltimore). 1971;50:357–420.CrossRefGoogle Scholar

Lymphoproliferative Disorders: Chronic Lymphatic Leukaemia

  1. 68.
    Klein U, Dalla-Favera R. New insights into the pathogenesis of chronic lymphocytic leukaemias. Semin Cancer Biol. 2010;20(6):377–83.CrossRefPubMedGoogle Scholar
  2. 69.
    Catovsky D, Fooks J, Richards S. Prognostic factors in chronic lymphatic leukaemia : the importance of age, sex and response to treatment in survival: a report from MRC CLL. Br J Haemat. 1989;72(2):141–9.CrossRefGoogle Scholar
  3. 70.
    Goldin LR, Pfeigger RM, Li X, Hemminski K. Familial risk of lymphoproliferative tumours of patients with chronic lymphocytic leukaemia: results from the Swedish Family-Cancer Database. Blood. 2004;104(6):1850–4 (abstract).CrossRefPubMedGoogle Scholar
  4. 71.
    Foon KA. Chronic lymphoid leukaemias: recent advances in biology and therapy. Stem Cells. 1995;13(1):1–21.CrossRefPubMedGoogle Scholar
  5. 72.
    Kalil N, Cheson BD. Chronic lymphocytic leukaemia. Oncologist. 1999;4(5):S352–69.Google Scholar
  6. 73.
    Gaidano G, Foa R, Dalla-Favera R. Molecular pathogenesis of chronic lymphocytic leukaemia. J Clin Invest. 2012;122(10):3432–8.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 74.
    DiGiuseppe JA, Borowitz MJ. Clinical utility of flow cytometry in chronic lymphoid leukaemias. Semin Oncol. 1998;25(1):6–10.PubMedGoogle Scholar

Non-Hodgkin’s Lymphoma

  1. 75.
    Rolland-Portal I, Tazi MA, Milan C, Couilault C, Carli PM. Non-Hodgkin’s lymphoma: time trends for incidence and survival in Cote- D’Or France. Int J Epidemiol. 1997;26(5):945–52.CrossRefPubMedGoogle Scholar
  2. 76.
    Young GAR, Iland HJ. Clinical perspectives in lymphoma. Int Med J. 2007;37:478–84.CrossRefGoogle Scholar
  3. 77.
    Hardell L, Lindstrom G, van Bevel B, Fredikson M, Liljrgren G. Some aspects of the etiology of non-Hodgkin’s lymphoma. Environ Health Perspect. 1998;106 Suppl 2:679–81 (abstract).PubMedCentralCrossRefPubMedGoogle Scholar
  4. 78.
    Pasqualucci L, Bereschenko O, Niu H, Klein U, Basso K, Guglielmino R, et al. Molecular pathogenesis of non-Hodgkin’s lymphoma: the role of Bcl-6. Leuk Lymphoma. 2003;44 Suppl 3:S5–12.CrossRefPubMedGoogle Scholar
  5. 79.
    Hardell L, Axelson O. Environmental and occupational aspects on the etiology of non-Hodgkin’s lymphoma. Oncol Res. 1998;10(1):1–5 (abstract).PubMedGoogle Scholar

Hodgkin’s Lymphoma

  1. 80.
    Poppema S. Immunobiology and pathophysiology of Hodgkin’s lymphomas. ASH Education Book. 2005;1231–238. http://asheducationbook.hematologylibrary.org/content/2005/1/231.full. Accessed 23 May 2012.
  2. 81.
    Harris NL. Hodgkin’s disease: classification and differential diagnosis. Mod Pathol. 1999;12(2):159–75 (abstract).PubMedGoogle Scholar
  3. 82.
    Foss HD, Msarafioti T, Stein H. Hodgkin lymphoma. Classification and pathogenesis. Pathologe. 2000;21(2):113–23 (abstract).CrossRefPubMedGoogle Scholar
  4. 83.
    Gruss HJ, Kadin ME. Pathophysiology of Hodgkin’s disease: functional and molecular aspects. Baillieres Clin Haematol. 1996;9(3):417–46 (abstract).CrossRefPubMedGoogle Scholar
  5. 84.
    Meyer RM, Ambinder RF, Stroobants S. Hodgkin’s lymphoma: evolving concepts with implications for practice. Hematology Am Soc Hematol Educ Program. 2004;184–202. (abstract).Google Scholar

Immunoproliferative Disorders: Multiple Myeloma

  1. 85.
    Riedel DA, Pottern LM. The epidemiology of multiple myeloma. Hematol Oncol Clin North Am. 1992;6:225–47.PubMedGoogle Scholar
  2. 86.
    Seidl S, Kaulmann H, Drach J. New insights into the physiology of multiple myeloma. Lancet Oncol. 2003;4(9):557–64 (abstract).CrossRefPubMedGoogle Scholar
  3. 87.
    Jagannath S. Pathophysiological underpinnings of multiple myeloma progression. J Manag Care Pharm. 2008;14(7):S7–11.Google Scholar
  4. 88.
    Menu E, Asosingh K, Van Reit I, Croucher P, Van Camp B, Vanderkerken K. Myeloma cells (5TMM) and their interactions with the marrow microenvironment. Blood Cells Mol Dis. 2004;33(2):111–9.CrossRefPubMedGoogle Scholar
  5. 89.
    Anderson KC, Carrasco RD. Pathogenesis of myeloma. Ann Rev Pathol. 2011;6:249–74 (abstract).CrossRefGoogle Scholar
  6. 90.
    Terpis E, Dimopoulos MA. Myeloma bone disease: pathophysiology and management. Ann Oncol. 2005;16(8):1223–31.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nages Nagaratnam
    • 1
  • Kujan Nagaratnam
    • 2
  • Gary Cheuk
    • 3
  1. 1.Sydney Medical School (Westmead)The University of SydneyNorth RocksAustralia
  2. 2.Norwest Specialist Medical GroupBella VistaAustralia
  3. 3.Blacktown-Mt Druitt HospitalBlacktownAustralia

Personalised recommendations