Advertisement

Respiratory Diseases in the Elderly

  • Nages Nagaratnam
  • Kujan Nagaratnam
  • Gary Cheuk
Chapter
  • 2k Downloads

Abstract

Normal physiological and structural changes occur in the respiratory system with ageing due to changes in pulmonary mechanics, respiratory muscle strength and ventilation control. There is an increase in pulmonary vascular stiffness, vascular pressures and vascular resistance associated with ageing. The thoracic cage becomes rigid and stiff with decrease chest movement shifting chest wall pressure-volume curve to the right. Changes in the airways contribute to increased chances of infection, increased residual volume and residual functional capacity and decreased vital capacity. Ventilation control diminishes with reduced response to hypoxia and hypercapnia.

The respiratory diseases included in this chapter are pneumonia, chronic obstructive airways disease, asthma, lung cancer and pulmonary embolism. Pneumonia is one of the most common infections in the elderly. In the elderly there is a greater susceptibility to infection because of the age-related decline in immune response. Ageing of the population and past smoking are the major causes of the increase in COPD. There have been several attempts to define asthma subtypes, and cluster analyses had identified different adult-onset asthma phenotype. Adult-onset asthma has notable eosinophilia, patterns of interleukins (IL) and TH2 pathway, but generally allergic disease assume less importance. Pulmonary embolism (PE) incidence, prevalence and mortality increase steadily with age. PE is predominantly a disease of the elderly and is often underdiagnosed.

Keywords

Elderly Age-related changes Pathophysiology Pulmonary mechanics Ventilation control Respiratory muscle strength 

References

Anatomical and Physiological Changes with Aging

  1. 1.
    Sprung J, Gajic O, Warner DO. Review article: age-related alterations in respiratory function-anaesthetic considerations. Can J Anaeth. 2006;53:1244–57.CrossRefGoogle Scholar
  2. 2.
    Oyarzun GM. Pulmonary function in aging. Rev Med Chil. 2009;137(3):411–8 (abstract).CrossRefGoogle Scholar
  3. 3.
    Janssens JP, Pache JC, Nicol NP. Physiological changes in respiratory function associated with aging. Eur Res J. 1999;13:197–205 (abstract).CrossRefGoogle Scholar
  4. 4.
    Janssens JP. Aging of the respiratory system: impact on pulmonary function tests and adaptation to exertion. Clin Chest Med. 2005;26(3):469–84 (abstract).CrossRefPubMedGoogle Scholar
  5. 5.
    Taylor BJ, Johnson BD. The pulmonary circulation and exercise responses in the elderly. Semin Respir Crit Care Med. 2010;31(5):528–38 (abstract).PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Fowler RW, Pluck RA, Hetzel MR. Maximal expiratory flow-volume curves in Londoners aged 60 years and over. Thorax. 1987;42:173–82.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Knight J, Nigam Y. Exploring the anatomy and physiology of aging part 2-the respiratory system. Nurs Times. 2008;104:24–5.Google Scholar
  8. 8.
    Levitzky MG. Effects of aging on the respiratory system. Physiologist. 1984;27(2):102–7.PubMedGoogle Scholar
  9. 9.
    Niewoehner DE, Kleinerman J. Morphologic basis of pulmonary resistance in human lung and effects of aging. J Appl Physiol. 1974;36:412–8.PubMedGoogle Scholar
  10. 10.
    Tolep K, Higgins N, Muza S, Criner G, Kelsen SG. Comparison of diaphragm between healthy adult elderly and young men. Am J Respir Crit Care Med. 1995;152:677–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Verbeken EK, Canberghs M, Merteus K, Clement J, Lanweryns JM, Van de Woestijne KP. The senile lung: comparison with normal and emphysematous lungs 1. Structural aspects. Chest. 1992;101(3):793–9.CrossRefPubMedGoogle Scholar

Pneumonia in the Elderly

  1. 12.
    Scheld WM, Mandell GI. Nosocomial pneumonia: pathogenesis and recent advances in diagnosis and therapy. Rev Infect Dis. 1991;13 Suppl 9:S743–51.CrossRefPubMedGoogle Scholar
  2. 13.
    Emori TG, Banerjee SN, Culver DH, Gaynes RP, Horan TC, Edwards JR, et al. Nosocomial infections in the elderly patients in the United States. 1986–1990. Am J Med. 1991;91(S3B):289S–93.CrossRefPubMedGoogle Scholar
  3. 14.
    Schaaf B, Liebau C, Kurowski V, Droemann D, Dalhoff CK. Hospital acquired pneumonia with high-risk bacteria is associated with increased pulmonary matrix metalloproteinase activity. BMC Pulm Med. 2008;8:12. doi: 10.1186/1471-2466-8-12.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 15.
    Miller MR. Structural and physiological age associated changes imaging lungs.Semin Respir Crit Care Med 2010;31(5):521–7.Google Scholar
  5. 16.
    Knight J, Nigam Y. Exploring the anatomy and physiology of aging part 2-the respiratory system. Nurs Times. 2008;104:24–5.Google Scholar
  6. 17.
    Strout RD, Suttles J. Immunosenescence and macrophage functional plasticity: dysregulation of macrophage function by age-associated microenvironmental changes. Immunol Rev. 2005;205:60–71.CrossRefGoogle Scholar
  7. 18.
    Yang SF, Chu SC, Chiang IC, Kuo WF, Chiou HL, Chon FB, et al. Excessive matrix metalloproteinase-9 in the plasma of community-acquired pneumonia. Clin Chim Acta. 2005;352:209–15.CrossRefPubMedGoogle Scholar
  8. 19.
    Hartog CM, Wermelt JA, Sommerfield CO, Eichler W, Dalhoff K, Braun J. Pulmonary matrix metalloproteinase excess in hospital-acquired pneumonia. Am J Respir Crit Care Med. 2003;167:593–8 (abstract).CrossRefPubMedGoogle Scholar
  9. 20.
    Halbertma FJ, Vanekar M, Scheffer GJ, van der Hoeven JG. Cytokines and biotrauma in ventilator-induced lung injury: a critical review of the literature. Neth J Med. 2005;63:382–92 (abstract).Google Scholar

Chronic Obstructive Pulmonary Disease (COPD)

  1. 21.
    Global initiative for COPD (GOLD) workshop summary. Am J Respir Crit Care Med. 2001;163:1256–76.Google Scholar
  2. 22.
    American Thoracic Society. Standards for the diagnosis and care of patients with Chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1995;152:S77–121.Google Scholar
  3. 23.
    Hurd S. The impact of COPD on lung health worldwide: epidemiology and incidence. Chest. 2000;117(suppl):1S–4.CrossRefPubMedGoogle Scholar
  4. 24.
    Sullivan SD, Ramsey SD, Lee TA. The economic burden of COPD. Chest. 2000;117 suppl 2:5S–9.CrossRefPubMedGoogle Scholar
  5. 25.
    Feenstra TL, van Genugten ML, Hoogenveen RT. The impact of aging and smoking on the future burden of chronic obstructive pulmonary disease: a model analysis in the Netherlands. Am J Respir Crit Care Med. 2001;154:590–6.CrossRefGoogle Scholar
  6. 26.
    Willemse BW, Hacken NH, Rutgers B, Lesman-Leegte JG, Timens W, Postma DS. Smoking cessation improves both direct and indirect airway hyperresponsiveness in COPD. Eur Respir J. 2004;24(3):391–6.CrossRefPubMedGoogle Scholar
  7. 27.
    Ohar J. New data in the pathophysiology of COPD. Website: http://www.medscape.com/view.article/540983.
  8. 28.
    Mannino DM, Buist AS, Petty TI, Enright PL, Redd SC. Lung function and mortality in the United States: data from the First National Health and National Examination Survey follow-up study. Thorax. 2003;58:388–93.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 29.
    Salvi SS, Barnes PF. Chronic obstructive pulmonary disease in non-smokers. Lancet. 2009;374:733–43.CrossRefPubMedGoogle Scholar
  10. 30.
    Narang I, Bush A. Early origins of chronic obstructive pulmonary disease. Semin Fetal Neonatal Med. 2012;17:112–8.CrossRefPubMedGoogle Scholar
  11. 31.
    Ritcher D, Russi EW. Alpha 1-antiproteinase deficiency. Ther Umsch. 1999;56(3):142–6 (abstract).CrossRefGoogle Scholar
  12. 32.
    Abboud RT, Vimanathan S. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis. 2008;12(4):361–7 (abstract).PubMedGoogle Scholar
  13. 33.
    Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences on interleukin-8 and tissue necrosis factor-alpha in induced sputum from patients with COPD or asthma. Am J Respir Crit Care Med. 1996;153:530–4.CrossRefPubMedGoogle Scholar
  14. 34.
    Baraldo S, Bazzan S, Zanin ME, Turarato G, Garbisa S, Maestrelli P, et al. Matrix metallo-proteinase-2 protein in lug periphery is released to COPD progression. Chest. 2007;132:1733–40.CrossRefPubMedGoogle Scholar
  15. 35.
    Pauwels RA, Brust AJ, Calverly PM, Jenkins CR, Hurd SS. GOLD Scientific Committee: Global strategy for diagnosis, management and prevention of chronic obstructive pulmonary disease: NHLBI/WHO. Global Initiative for Chronic Obstructive Lung Disease (GOLD).Google Scholar
  16. 36.
    Barnes PJ. Managing chronic obstructive – pulmonary disease. 2nd ed. London: sP. Science Press Ltd; 2001.Google Scholar
  17. 37.
    Thompson PB, Daughton D, Robbins GA, Ghafonki MA, Ochlerking M, Rennard SI. Intramural airway inflammation in chronic bronchitis. Characterization and correlation with clinical parameters. Am Rev Respir Dis. 1989;140:1527–37.CrossRefPubMedGoogle Scholar
  18. 38.
    Lofdahal M, Blomberg A, Roos-Engstrand E, Skold M. Increased CD4+ T cell infiltration in bronchial epithelium of patients with COPD. Program and abstracts of the American Thoracic Society. 19–24 May 2006, San Diego.Google Scholar
  19. 39.
    Papi A, Luppi F, Franco F, Fabbri LM. Pathophysiology of exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2006;3(3):245–51.CrossRefPubMedGoogle Scholar
  20. 40.
    Braman SS. Asthma in the elderly. Clin Geriatr Med. 2003;19:57–75.CrossRefPubMedGoogle Scholar
  21. 41.
    Repine JE, Bast A, Lankhorst I. Oxidative stress in chronic obstructive pulmonary disease. Oxidative Stress Study Group. Am J Respir Crit Care Med. 1997;156:341–57.CrossRefPubMedGoogle Scholar
  22. 42.
    Mannino DM. COPD: epidemiology, prevalence, morbidity and mortality and disease heterogeneity. Chest. 2002;121:1215–65.CrossRefGoogle Scholar
  23. 43.
    Ohar J. New data in the pathophysiology of COPD. Website: http://www.medscape.com/view.article/540983.
  24. 44.
    Biswal S, Huang K, Misra V, et al. Physiological genomics of emphysema in aging normal lungs. Program and abstracts of the ATS 2000. International Conference My 19–24, San Diego.Google Scholar
  25. 45.
    Giard A, Yanagisawa M, Langliben D, Michel RP, Levy R, Schennib H, et al. Expression of endothelium-I in the lungs of patients with pulmonary hypertension. N Engl J Med. 1993;328:1732–9.CrossRefGoogle Scholar

Asthma in the Elderly

  1. 46.
    Parameswaran K. Asthma in the elderly: under recognised, underdiagnosed and undertreated: a community survey. Respir Med. 1998;92:573–7.CrossRefPubMedGoogle Scholar
  2. 47.
    Radenne F, Verkinne C, Tonnel AS. Asthma in the elderly. Res Mal Respir. 2003;20:9S–10 (abstract).Google Scholar
  3. 48.
    Murtagh E, Heaney L, Gingles J, Shepherd R, Kee F, Patterson C, et al. The prevalence of obstructive lung disease in a general population sample: the NICECOPD study. Eur J Epidemiol. 2005;20(3):443–53.CrossRefPubMedGoogle Scholar
  4. 49.
    Enright PL, McClelland RL, Newman AB, Gottlieb DJ, Lebowitz MD. Underdiagnosis and undertreatment of asthma in the elderly. Chest. 1999;116:603–13.CrossRefPubMedGoogle Scholar
  5. 50.
    Bouquet J, Jeffery PK, Busse WW. Asthma: from bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med. 2000;161:1720–45.CrossRefGoogle Scholar
  6. 51.
    Currie GP, Lee DK, Lipworth BJ. Long-acting beta-2 agonists in asthma: not so smart. Drug Saf. 2006;29(8):647–56 (abstract).CrossRefPubMedGoogle Scholar
  7. 52.
    Fireman P. Understanding asthma pathophysiology. Allergy Asthma Proc. 2003;24(2):79–83 (abstract).PubMedGoogle Scholar
  8. 53.
    Page S, Ammit AJ, Black JL, Armour CL. Human mast cell and airway smooth muscle cell interactions: implications for asthma. Am J Physiol Lung Cell Mol Physiol. 2001;281(6):L1313–23 (abstract).PubMedGoogle Scholar
  9. 54.
    Melen E, Pershagen G. Pathophysiology of asthma: lessons from genetic research with particular focus on severe asthma. J In Med. 2012;272:108–20. doi:  10.1111/J1365_2796.2012.02555x. (abstract).
  10. 55.
    Moffat MF, Gut IG, Demenais F, Strachan DP, Bonzigon E, Heath S, et al. A large-scale consortium-based genomewide association study of asthma. N Engl J Med. 2010;363:1211–21.CrossRefGoogle Scholar
  11. 56.
    Murphy DM, O’Byme PM. Recent advances in the pathophysiology of asthma. Chest. 2010;137(6):1417–26. doi: 10.1378/chest.09-1895.CrossRefPubMedGoogle Scholar
  12. 57.
    de Nijs SB, Venekamp LN, Bel EH. Adult-onset asthma: is it really different? Eur Respir Rev. 2013;22(127):44–52.CrossRefPubMedGoogle Scholar
  13. 58.
    Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18:716–25.CrossRefPubMedGoogle Scholar
  14. 59.
    Olin JT, Wechsler ME. Asthma: pathogenesis and novel drug treatment. BMJ. 2014;349:g5517.CrossRefPubMedGoogle Scholar
  15. 60.
    Barnes PJ. Managing chronic obstructive – pulmonary disease. 2nd ed. London: sP. Science Press Ltd; 2001.Google Scholar
  16. 61.
    Wills-Karp M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol. 1999;17:255–81 (abstract).CrossRefPubMedGoogle Scholar
  17. 62.
    Kips JC. The relation between morphologic and functional airway changes in bronchial asthma. Verh K Acad Geneeskd Belg. 2003;65(4):247–65 (abstract).PubMedGoogle Scholar
  18. 63.
    Bara I, Ozier A, Tunon de Lara JM, Marthan R, Berger P. Pathophysiology of bronchial smooth muscle remodelling in asthma. Eur Respir J. 2010;26(5):1174–84 (abstract).CrossRefGoogle Scholar
  19. 64.
    Armour C, Johnson P, Anticeviel S, Ammit A, McKay K, Hughes M. Mediators on human airway smooth muscle. Clin Exp Pharmacol Physiol. 1997;24(3–4):269–72 (abstract).CrossRefPubMedGoogle Scholar
  20. 65.
    Robinson DS. The role of mast cells in asthma: induction of airway hyperresponsiveness by interaction with smooth muscle. J Allergy Clin Immunol. 2004;114(1):58–65 (abstract).CrossRefPubMedGoogle Scholar
  21. 66.
    Elsassar S, Perruchoud AP. Pathophysiology of bronchial asthma. Schweiz Rundsch Med Prax. 1992;81(45):1346–9 (abstract).Google Scholar

Lung Cancer in the Elderly

  1. 67.
    Wingo PA, Cardinez CJ, Landes SH, Greenlee RT, Ries LA, Anderson RN, et al. Long term trends in cancer mortality in the United States. Cancer. 2003;97 suppl 12:3133–275.CrossRefPubMedGoogle Scholar
  2. 68.
    Balducci L. Lung cancer in the elderly. CA Cancer J Clin. 2003;53:322. doi: 10.3322/canjclin.53.6.322.CrossRefPubMedGoogle Scholar
  3. 69.
    Brown JS, Eraut D, Trask C, Davison AG. Age and the treatment of lung cancer. Thorax. 1996;51:564–8.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 70.
    Maione P, Rossi A, Sacco PC, Bareschino MA, Schettino C. Treating advanced non-small cell lung cancer in the elderly. Ther Adv Med Oncol. 2010;2(4):251–60.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 71.
    Bunn PA, Lilenbaum R. Chemotherapy for elderly patients with advanced non-small cell lung cancer. J Natl Cancer Inst. 2003;95:341–3.CrossRefPubMedGoogle Scholar
  6. 72.
    De Cos JS, Miravet L, Abal J, Nunez A, Munoz FJ, Gercia L, et al. The EpicliCP-2003 Study: a Multicenter epidemiological and clinical study of lung cancer in Spain. Arch Bronconeumol. 2006;42:446–52.Google Scholar
  7. 73.
    Fong KM, Sekido Y, Gazdar AF, Minna JD. Lung cancer: molecular biology of lung cancer: clinical implications. Thorax. 2003;58:892–900.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 74.
    Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J Clin Oncol. 1998;16:1207–17.PubMedGoogle Scholar
  9. 75.
    Aviel-Ronen S, Blackhall FH, Shepherd FA, Tsao MS. K-ras mutations in non-small cell lung carcinoma: a review. Clin Lung Cancer. 2006;8:30–8.CrossRefPubMedGoogle Scholar
  10. 76.
    D’Arcangelo M, Capuzzo F. K-RAS mutations in non-small cell lung cancer: prognostic and predictive value. ISRN Mol Biol. 2012; doi: 10.5402/2012/837306 Google Scholar
  11. 77.
    Martin P, Leigh NB, Tsao MS, Shepherd FA. KRAS mutations as prognostic and predictive markers in non-small cell lung cancer. J Thorac Oncol. 2013;8(5):530–42 (abstract).CrossRefPubMedGoogle Scholar
  12. 78.
    Hecht S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer. 2003;3:733–44.CrossRefPubMedGoogle Scholar
  13. 79.
    Billelo KS, Murin S, Matthay RA. Epidemiology, etiology and prevalence of lung cancer. Clin Chest Med. 2002;23:1–25.CrossRefGoogle Scholar
  14. 80.
    Kumar V, Cotran RS, Robbins SL. Basic pathology. 5th ed. Philadelphia: WB Saunders Company; 1992.Google Scholar

Acute Pulmonary Embolism in the Elderly

  1. 81.
    Kniffer Jr WD, Baron JA, Barrett J, Birkmeyer JD, Anderson Jr FA. The epidemiology of diagnosed pulmonary embolism and deep vein thrombosis in the elderly. Arch Intern Med. 1994;154:861–6.CrossRefGoogle Scholar
  2. 82.
    White RH. Four topics of venous thromboembolism. Circulation. 2003;107:1-4-1-8. doi: 10.1161/01.CIR.0000078468.11849.66.Google Scholar
  3. 83.
    Barrit W, Jordan SE. Anticoagulant drugs in the treatment of pulmonary embolism: a controlled trial. Lancet. 1960;1:1309–12.CrossRefGoogle Scholar
  4. 84.
    Garg K. Acute pulmonary embolism (Helical CT). eMedicine. http://www.emedicine.com/radio/byname/Acute-Pulmonary-Embolism-(Helical-CT).htm. Accessed 28 Sep 2008.
  5. 85.
    Kostadima E, Zakynthinos E. Pulmonary embolism: pathophysiology diagnosis and treatment. Hellenic J Cardiol. 2007;48(2):94–107.PubMedGoogle Scholar
  6. 86.
    Smulders YM. Pathophysiology and treatment of haemodynamic instability in acute pulmonary embolism: the pivotal role of pulmonary vasoconstriction. Cardiovasc Res. 2000;48:23–33 (abstract).CrossRefPubMedGoogle Scholar
  7. 87.
    Dantzker DR, Bower JS. Alterations in gas exchange following pulmonary thromboembolism. Chest. 1982;81(4):495–501.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nages Nagaratnam
    • 1
  • Kujan Nagaratnam
    • 2
  • Gary Cheuk
    • 3
  1. 1.Sydney Medical School (Westmead)The University of SydneyNorth RocksAustralia
  2. 2.Norwest Specialist Medical GroupBella VistaAustralia
  3. 3.Blacktown-Mt Druitt HospitalBlacktownAustralia

Personalised recommendations