Advertisement

Rough Set Theory Applied to Simple Undirected Graphs

  • Giampiero Chiaselotti
  • Davide Ciucci
  • Tommaso Gentile
  • Federico Infusino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9436)

Abstract

The incidence matrix of a simple undirected graph is used as an information table. Then, rough set notions are applied to it: approximations, membership function, positive region and discernibility matrix. The particular cases of complete and bipartite graphs are analyzed. The symmetry induced in graphs by the indiscernibility relation is studied and a new concept of generalized discernibility matrix is introduced.

Keywords

Undirected graphs Neighborhood Discernibility matrix Complete graphs Bipartite graphs Symmetry 

References

  1. 1.
    Chen, J., Li, J.: An application of rough sets to graph theory. Inf. Sci. 201, 114–127 (2012)zbMATHCrossRefGoogle Scholar
  2. 2.
    Cattaneo, G., Chiaselotti, G., Ciucci, D., Gentile, T.: On the connection of hypergraph theory with formal concept analysis and rough set theory. Submitted to Information Sciences (2015)Google Scholar
  3. 3.
    Chiaselotti, G., Ciucci, D., Gentile, T.: Simple graphs in granular computing. Submitted to Information Sciences (2015)Google Scholar
  4. 4.
    Chiaselotti, G., Ciucci, D., Gentile, T.: Simple undirected graphs as formal contexts. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS, vol. 9113, pp. 287–302. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  5. 5.
    Diestel, R.: Graph Theory, Graduate Text in Mathematics, 4th edn. Springer, Heidelberg (2010) Google Scholar
  6. 6.
    Midelfart, H., Komorowski, J.: A rough set framework for learning in a directed acyclic graph. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, p. 144. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  7. 7.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publisher, Dordrecht (1991) zbMATHCrossRefGoogle Scholar
  8. 8.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support. Theory and Decision Library, vol. 11. Springer, Netherlands (1992) Google Scholar
  9. 9.
    Tang, J., She, K., William Zhu, W.: Matroidal structure of rough sets from the viewpoint of graph theory. J. Appl. Math. 2012 (2012). doi: 10.1155/2012/973920
  10. 10.
    Wang, S., Zhu, Q., Zhu, W., Min, F.: Equivalent characterizations of some graph problems by covering-based rough sets. J. Appl. Math. 2013 (2013). doi: 10.1155/2013/519173

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Giampiero Chiaselotti
    • 2
  • Davide Ciucci
    • 1
  • Tommaso Gentile
    • 2
  • Federico Infusino
    • 2
  1. 1.DISCoUniversity of Milano – BicoccaMilanoItaly
  2. 2.Department of Mathematics and InformaticsUniversity of CalabriaArcavacata di RendeItaly

Personalised recommendations