Combining Rough Clustering Schemes as a Rough Ensemble

  • Pawan Lingras
  • Farhana Haider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9436)


One of the challenges of big data is to combine results of data mining obtained from a distributed dataset. The objective is to minimize the amount data transfer with minimum information loss. A generic combination process will not necessarily provide an optimal ensemble of results. In this paper, we describe a rough clustering problem that leads to a natural ordering of clusters. These ordered rough clusterings are then combined while preserving the properties of rough clustering. A time series dataset of commodity prices is clustered using two different representations to demonstrate the ordered rough clustering process. The information from the ordering of clusters is shown to help us retain salient aspects of individual rough clustering schemes.


Clustering Ensemble Rough sets Granular computing Financial time series Volatility 


  1. 1.
    Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)zbMATHCrossRefGoogle Scholar
  2. 2.
    Fern, X.Z., Lin, W.: Cluster ensemble selection. Stat. Anal. Data Mining 1(3), 128–141 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Fred, A.: Finding consistent clusters in data partitions. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, p. 309. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  4. 4.
    Gao, C., Pedrycz, W., Miao, D.: Rough subspace-based clustering ensemble for categorical data. Soft Comput. 5(3), 1–16 (2013)Google Scholar
  5. 5.
    Ghosh, J., Acharya, A.: Cluster ensembles. Wiley Interdisc. Rev. Data Mining Knowl. Discov. 1(4), 305–315 (2011)CrossRefGoogle Scholar
  6. 6.
    Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov. Data 1(1), 4 (2007)CrossRefGoogle Scholar
  7. 7.
    Jia, Z., Han, J.: An improved model of executive stock option based on rough set and support vector machines. In: 2008 Pacific-Asia Workshop on Computational Intelligence and Industrial Application, PACIIA 2008, 1, pp. 256–261. IEEE (2008)Google Scholar
  8. 8.
    Joshi, M., Lingras, P.: Evolutionary and iterative crisp and rough clustering II: experiments. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds.) PReMI 2009. LNCS, vol. 5909, pp. 621–627. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  9. 9.
    Lingras, P., Haider, F.: Rough ensemble clustering. In: Intelligent Data Analysis, Special Issue on Business Analytics in Finance and Industry (2014)Google Scholar
  10. 10.
    Lingras, P., West, C.: Interval set clustering of web users with rough k-means. J. Intell. Inf. Sys. 23(1), 5–16 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Mitra, S.: An evolutionary rough partitive clustering. Pattern Recogn. Lett. 25(12), 1439–1449 (2004)CrossRefGoogle Scholar
  12. 12.
    Nair, B.B., Mohandas, V., Sakthivel, N.: A decision treerough set hybrid system for stock market trend prediction. Int. J. Comput. Appl. 6(9), 1–6 (2010)Google Scholar
  13. 13.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Pawlak, Z.: Fuzzy Logic for the Management of Uncertainty. Rough sets: a new approach to vagueness. Wiley, Newyork (1992) Google Scholar
  15. 15.
    Peters, G.: Some refinements of rough k-means clustering. Pattern Recogn. 39(8), 1481–1491 (2006)zbMATHCrossRefGoogle Scholar
  16. 16.
    Peters, G., Crespo, F., Lingras, P., Weber, R.: Soft clustering-fuzzy and rough approaches and their extensions and derivatives. Int. J. Approximate Reasoning 54(2), 307–322 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. Int. J. Approximate Reasoning 15(4), 333–365 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Skowron, A., Stepaniuk, J.: Information granules in distributed environment. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 357–366. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  19. 19.
    Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms. Int. J. Pattern Recogn. Artif. Intell. 25(03), 337–372 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yao, J., Herbert, J.P.: Financial time-series analysis with rough sets. Appl. Soft Comput. 9(3), 1000–1007 (2009)CrossRefGoogle Scholar
  22. 22.
    Yao, Y., Li, X., Lin, T., Liu, Q.: Representation and classification of rough set models. In: Proceeding of Third International Workshop on Rough Sets and Soft Computing. pp. 630–637 (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Mathematics and Computing ScienceSaint Maryś UniversityHalifaxCanada

Personalised recommendations