Advertisement

Pedestrian Detection Using Multi-Objective Optimization

  • Pablo Negri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9423)

Abstract

Pedestrian detection on urban video sequences challenges classification systems because of the presence of cluttered backgrounds which drop their performances. This article proposes a Multi-Objective Optimization (MOO) technique reducing this limitation. It trains a pool of cascades of boosted classifiers using different positive datasets. A Pareto Front is obtained from the locally non-dominated operational points of the Receptive Objective Curve (ROC) of those classifiers. Using information about the dynamic of the scene, different pairs of operational points from the Pareto Front are employed to improve the performance of the system. Results on a real sequences outperform traditional detector systems.

Keywords

Multi-objective optimization Pedestrian detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradley, A.: The use of the area under the roc curve in the evaluation of machine learning algorithms. PR 30, 1145–1159 (1997)Google Scholar
  2. 2.
    Cabezas, I., Trujillo, M.: A method for reducing the cardinality of the pareto front. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 829–836. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Chatelain, C., et al.: A multi-model selection framework for unknown and/or evolutive misclassification cost problems. PR 43(3), 815–823 (2010)zbMATHGoogle Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. CVPR 1, 886–893 (2005)Google Scholar
  5. 5.
    Felzenszwalb, P., Girshick, G., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  6. 6.
    Li, W., Liu, L., Gong, W.: Multi-objective uniform design as a svm model selection tool for face recognition. Expert Systems with Applications 38, 6689–6695 (2011)CrossRefGoogle Scholar
  7. 7.
    Negri, P.: Estimating the queue length at street intersections by using a movement feature space approach. IET IP 8(7), 406–416 (2014)MathSciNetGoogle Scholar
  8. 8.
    Negri, P., Goussies, N., Lotito, P.: Detecting pedestrians on a movement feature space. PR 47(1), 56–71 (2014)Google Scholar
  9. 9.
    Negri, P., Lotito, P.: Pedestrian detection using a feature space based on colored level lines. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 885–892. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Rosales-Pérez, A., Gonzalez, J.A., Coello-Coello, C.A., Reyes-Garcia, C.A., Escalante, H.J.: Evolutionary multi-objective approach for prototype generation and feature selection. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 424–431. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Rosales-Pérez, A., et al.: Surrogate-assisted multi-objective model selection for support vector machines. Neurocomputing 150, 163–172 (2015)CrossRefGoogle Scholar
  12. 12.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. CVPR 1, 511–518 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CONICETBuenos AiresArgentina
  2. 2.INTEC-UADEBuenos AiresArgentina

Personalised recommendations