A Semantic Model for Proactive Home Care Systems

  • Alencar Machado
  • Leandro Krug Wives
  • José Palazzo Moreira de Oliveira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9382)


In proactive computing, systems can act to eliminate, mitigate or take advantage of previous knowledge to manipulate situations of interest in advance. Such behavior is critical for Ambient Assisted Living Systems. In this paper, we present semantic models to design and implement proactive systems to Home Care environments implemented with devices and sensors. These models support semantic interoperability between the physical environments and different software levels allowing the identification of the user context. Proactivity is then obtained by the construction of the most suitable action´s plan that results from the consumption of services provided by these devices and services. One challenge is to model a high-level situation and select the particular device that best meets users’ needs, considering their context, location, and disabilities. The paper describes the steps required to create a generic, flexible and modularized model that can be extended to incorporate new domain knowledge regarding the specific requirements of different Ambient Assisted Living Systems.


Proactive behavior Ambient modelling Assisted living Ontology 


  1. 1.
    World Population Prospects: The 2012 Revision [WWW Document], United Nations, Dep. Econ. Soc. Aff c(2013).
  2. 2.
    Sadri, F.: Ambient intelligence: a survey. ACM Comput. 43(4), 1–66 (2011)CrossRefGoogle Scholar
  3. 3.
    Auvinen, A., Silen, R., Groop, J., Lillrank, P., Defining service elements in home care. In: Annual SRII Global Conference, pp. 378–383. IEEE (2011)Google Scholar
  4. 4.
    Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: a review. Pervasive Mob. Comput. 8(1), 36–66 (2011)CrossRefGoogle Scholar
  5. 5.
    Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co, Greenwich (2010)Google Scholar
  6. 6.
    Ye, J., Stevenson, G., Dobson, S.: A top-level ontology for smart environments. Pervasive Mob. Comput. 7(3), 359–378 (2011)CrossRefGoogle Scholar
  7. 7.
    Engel, Y., Etzion, O.: Towards proactive event-driven computing. In: Proceedings of the 5th ACM International Conference on Distributed Event-Based System, pp. 125–136 (2011)Google Scholar
  8. 8.
    Howard, C., Stumptner, M.: A survey of directed entity-relation-based first-order probabilistic languages. ACM Comput. Surv. 47(1), 4 (2014)CrossRefGoogle Scholar
  9. 9.
    Machado, A., Pernas, A.M., Wives, L.K., de Oliveira, J.P.M.: Situation-Aware smart environment modeling. In: Parsons, J., Chiu, D. (eds.) ER Workshops 2013. LNCS, vol. 8697, pp. 139–149. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Machado, A., Lichtnow, D., Pernas, A.M., Wives, L.K., Oliveira, J.P.M.: A reactive and proactive approach for ambient intelligence. In: 16th International Conference on Enterprise Information Systems, Lisbon, pp. 501–512 (2014)Google Scholar
  11. 11.
    Machado, A., Pernas, A.M., Augustin, I., Thom, L. H., Wives, L.K., Oliveira, J.P.M. Situation-awareness as a key for proactive actions in ambient assisted living. In: Proceedings of the 15th International Conference on Enterprise Information, pp. 418–426 (2013)Google Scholar
  12. 12.
    Allocca, C., d’Aquin, M., Motta, E.: Door– towards a formalization of ontology relations. In: International Conference on Knowledge Engineering and Ontology Development, INSTICC Press, Setubal, pp. 13–20 (2009)Google Scholar
  13. 13.
    Pernas, A.M., Yamin, A.C., Lopes, J.L., Oliveira, J.P.M.D.: A semantic approach for learning situation detection. In: IEEE 28th International Conference on Advanced Information Networking and Applications (AINA), pp. 1119–1126. IEEE (2014)Google Scholar
  14. 14.
    Díaz, A., Motz, R., Rohrer, E., Tansini, L.: An ontology network for educational recommender systems. In: Educational Recommender Systems and Technologies: Practices and Challenges: Practices and Challenges, p. 67 (2011)Google Scholar
  15. 15.
    Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible context ontology for ambient intelligence. In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 148–159. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Bonino, D., Corno, F.: Dogont-ontology modeling for intelligent domotic environments. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    W3C Semantic Web Interest Group: WGS84 geo positioning: an RDF vocabulary (2009).
  18. 18.
    Martin, D., Paolucci, M., McIlraith, S.A., Burstein, M., McDermott, D., McGuinness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.: Bringing semantics to web services: The OWL-S approach. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Carvalho, R.N., Laskey, K.B., Costa, P.C.: PR-OWL 2.0– bridging the gap to OWL semantics. In: Bobillo, F., Costa, P.C., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2008-2010/UniDL 2010. LNCS, vol. 7123, pp. 1–18. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Kambara, J.S., Medeiros, G.M., Thom, L.H., Wives, L.K.: Business process modeling and instantiation in home care environments. In: International Conference on Enterprise Information Systems, Lisboa, pp. 513–525 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alencar Machado
    • 1
    • 2
  • Leandro Krug Wives
    • 1
  • José Palazzo Moreira de Oliveira
    • 1
  1. 1.Instituto de InformáticaPPGC, UFRGSPorto AlegreBrazil
  2. 2.Colégio PolitécnicoUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations