Bitemporal Support for Business Process Contingency Management

  • John Wondoh
  • Georg Grossmann
  • Dragan Gasevic
  • Manfred Reichert
  • Michael Schrefl
  • Markus Stumptner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9382)


Modern organisations are increasingly moving from traditional monolithic business systems to environments where more and more tasks are outsourced to third party providers. Therefore, processes must operate in an open and dynamic environment in which the management of time plays a crucial role. Handling time, however, remains a challenging issue yet to be fully addressed. Traditional processing systems only consider business events in a single time dimension, but are unable to handle bitemporal events: events in two time dimensions. Recently, back-end systems have started to provide increased support for handling bitemporal events, but these enhanced capabilities have not been carried through to business process management systems. In this paper, we consider the possible relationships that exist between bitemporal properties of events and we show how these relationships affect a business process. In addition, we demonstrate how bitemporal events can be handled to prevent certain undesired effects on the business process.


Bitemporal events Business process design Business rules Process reconfiguration 



This research was partially funded by the Data to Decisions Cooperative Research Centre (D2D CRC).


  1. 1.
    Artikis, A., Etzion, O., Feldman, Z., Fournier, F.: Event processing under uncertainty. In: Proceedings of DEBS, pp. 32–43. ACM (2012)Google Scholar
  2. 2.
    Furche, T., Grasso, G., Huemer, M., Schallhart, C., Schrefl, M.: Bitemporal complex event processing of web event advertisements. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013, Part II. LNCS, vol. 8181, pp. 333–346. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Grossmann, G., Schrefl, M., Stumptner, M.: A conceptual modeling approach for web service composition supporting service re-configuration. In: Proceedings of APCCM, pp. 43–52 (2010)Google Scholar
  4. 4.
    Koetter, F., Kochanowski, M., Kintz, M.: Leveraging model-driven monitoring for event-driven business process control. In: Proceedings of EMoV, pp. 21–33 (2014)Google Scholar
  5. 5.
    Kulkarni, K., Michels, J.E.: Temporal features in SQL:2011. SIGMOD Rec. 41(3), 34–43 (2012)CrossRefGoogle Scholar
  6. 6.
    Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controllability of time-aware processes at run time. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) ODBASE 2013. LNCS, vol. 8185, pp. 39–56. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information systems. Requir. Eng. 19(2), 113–141 (2014)CrossRefGoogle Scholar
  8. 8.
    Mareco, C., Bertossi, L.: Specification and implementation of temporal databases in a bitemporal event calculus. In: Chen, P.P., Embley, D.W., Kouloumdjian, J., Liddle, S.W., Roddick, J.F. (eds.) Advances in Conceptual Modeling. LNCS, vol. 1727. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  9. 9.
    Pichler, H., Wenger, M., Eder, J.: Composing time-aware web service orchestrations. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 349–363. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  10. 10.
    Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 115–135. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  11. 11.
    Salzberg, B., Tsotras, V.J.: Comparison of access methods for time-evolving data. ACM Comput. Surv. 31(2), 158–221 (1999)CrossRefGoogle Scholar
  12. 12.
    Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.: Process flexibility: a survey of contemporary approaches. In: Albani, A., Barjis, J., Dietz, J.L.G. (eds.) CIAO! 2008. LNBIP, vol. 10, pp. 16–30. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  13. 13.
    Snodgrass, R.: Temporal databases. In: Frank, A.U., Campari, I., Formentini, U. (eds.) Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. LNCS, vol. 639, pp. 22–64. Springer, Hiedleberg (1992)CrossRefGoogle Scholar
  14. 14.
    Sun, H., Yang, J., Zhao, W., Su, J.: TiCoBTx-Net: a model to manage temporal consistency of service-oriented business collaboration. Serv. Comput. 5(2), 207–219 (2012)Google Scholar
  15. 15.
    Wieringa, R.J.: Design methods for reactive systems: Yourdon, Statemate, and the UML. Elsevier, San Francisco (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • John Wondoh
    • 1
  • Georg Grossmann
    • 1
  • Dragan Gasevic
    • 2
  • Manfred Reichert
    • 3
  • Michael Schrefl
    • 4
  • Markus Stumptner
    • 1
  1. 1.University of South AustraliaAdelaideAustralia
  2. 2.University of EdinburghEdinburghUK
  3. 3.Ulm UniversityUlmGermany
  4. 4.Johannes Kepler University of LinzLinzAustria

Personalised recommendations