Cellular and Molecular Mechanisms of rTMS-induced Neural Plasticity

  • Maximilian Lenz
  • Florian Müller-Dahlhaus
  • Andreas VlachosEmail author


Despite its increasing use in clinical practice, our knowledge on the cellular and molecular mechanisms of repetitive transcranial magnetic stimulation (rTMS) remains limited. Yet, work from the past years has provided important new insights into how TMS excites neural tissue and induces neural plasticity. Emerging evidence suggests that rTMS may act on inhibitory and excitatory networks to induce the structural, functional and molecular remodeling of neuronal networks. Likewise, rTMS-mediated changes in gene expression profiles and neuromodulatory transmitter systems have been reported. Together, these studies confirm that rTMS induces plasticity in cortical brain regions. They indicate that repetitive magnetic stimulation interferes with the ability of neurons to express distinct forms of plasticity beyond the stimulation period. Hence, a biologically driven attempt to improve the use of rTMS in clinical practice has started to emerge. In this chapter we aim at providing a concise review on the current knowledge of rTMS-induced cellular and molecular mechanisms relevant for neural plasticity.


Dendritic spines LTP AMPA NMDA Immediate early genes Parvalbumin Calbindin Neurological diseases Psychiatric diseases 



The authors thank Drs. Thomas Deller and Ulf Ziemann for their support.


  1. Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19:126–130CrossRefPubMedGoogle Scholar
  2. Aydin-Abidin S, Trippe J, Funke K, Eysel UT, Benali A (2008) High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp Brain Res 88:249–261CrossRefGoogle Scholar
  3. Barkus C (2013) Genetic mouse models of depression. Curr Top Behav Neurosci 14:55–78CrossRefPubMedGoogle Scholar
  4. Barth AL (2007) Visualizing circuits and systems using transgenic reporters of neural activity. Curr Opin Neurobiol 17:567–571PubMedCentralCrossRefPubMedGoogle Scholar
  5. Basser PJ (1994) Focal magnetic stimulation of an axon. IEEE Trans Biomed Eng 41:601–606CrossRefPubMedGoogle Scholar
  6. Benali A, Trippe J, Weiler E, Mix A, Petrasch-Parwez E, Girzalsky W, Eysel UT, Erdmann R, Funke K (2011) Theta-burst transcranial magnetic stimulation alters cortical inhibition. J Neurosci 31:1193–1203CrossRefPubMedGoogle Scholar
  7. Ben-Shachar D, Gazawi H, Riboyad-Levin J, Klein E (1999) Chronic repetitive transcranial magnetic stimulation alters beta-adrenergic and 5-HT2 receptor characteristics in rat brain. Brain Res 816:78–83CrossRefPubMedGoogle Scholar
  8. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMedGoogle Scholar
  9. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356PubMedCentralCrossRefPubMedGoogle Scholar
  10. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403CrossRefPubMedGoogle Scholar
  11. Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG (2013) Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci 16:838–844CrossRefPubMedGoogle Scholar
  12. Davis GW (2006) Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev Neurosci 29:307–323CrossRefPubMedGoogle Scholar
  13. Erhardt A, Sillaber I, Welt T, Müller MB, Singewald N, Keck ME (2004) Repetitive transcranial magnetic stimulation increases the release of dopamine in the nucleus accumbens shell of morphine-sensitized rats during abstinence. Neuropsychopharmacology 29:2074–2080CrossRefPubMedGoogle Scholar
  14. Fang ZY, Li Z, Xiong L, Huang J, Huang XL (2010) Magnetic stimulation influences injury-induced migration of white matter astrocytes. Electromagn Biol Med 29:113–121CrossRefPubMedGoogle Scholar
  15. Ferguson AR, Huie JR, Crown ED, Baumbauer KM, Hook MA, Garraway SM, Lee KH, Hoy KC, Grau JW (2012) Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury. Front Physiol 3:399, 10PubMedCentralPubMedGoogle Scholar
  16. Fujiki M, Steward O (1997) High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS. Brain Res Mol Brain Res 44:301–308CrossRefPubMedGoogle Scholar
  17. Funke K, Benali A (2011) Modulation of cortical inhibition by rTMS - findings obtained from animal models. J Physiol 589:4423–4435PubMedCentralCrossRefPubMedGoogle Scholar
  18. Gersner R, Kravetz E, Feil J, Pell G, Zangen A (2011) Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: differential outcomes in anesthetized and awake animals. J Neurosci 31:7521–7526CrossRefPubMedGoogle Scholar
  19. Hanse E, Seth H, Riebe I (2013) AMPA-silent synapses in brain development and pathology. Nat Rev Neurosci 14:839–850CrossRefPubMedGoogle Scholar
  20. Hausmann A, Marksteiner J, Hinterhuber H, Humpel C (2001) Magnetic stimulation induces neuronal c-fos via tetrodotoxin-sensitive sodium channels in organotypic cortex brain slices of the rat. Neurosci Lett 310:105–108CrossRefPubMedGoogle Scholar
  21. Hausmann A, Weis C, Marksteiner J, Hinterhuber H, Humpel C (2000) Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus. Brain Res Mol Brain Res 76:355–362CrossRefPubMedGoogle Scholar
  22. Hebb DO (1949) The organization of behavior. Wiley & Sons, New YorkGoogle Scholar
  23. Hellmann J, Jüttner R, Roth C, Bajbouj M, Kirste I, Heuser I, Gertz K, Endres M, Kronenberg G (2012) Repetitive magnetic stimulation of human-derived neuron-like cells activates cAMP-CREB pathway. Eur Arch Psychiatry Clin Neurosci 262:87–91CrossRefPubMedGoogle Scholar
  24. Hoppenrath K, Funke K (2013) Time-course of changes in neuronal activity markers following iTBS-TMS of the rat neocortex. Neurosci Lett 536:19–23CrossRefPubMedGoogle Scholar
  25. Hsieh TH, Huang YZ, Rotenberg A, Pascual-Leone A, Chiang YH, Wang JY, Chen JJ (2015) Functional dopaminergic neurons in substantia nigra are required for transcranial magnetic stimulation-induced motor plasticity. Cereb Cortex 25:1806–1814Google Scholar
  26. Hulme SR, Jones OD, Abraham WC (2013) Emerging roles for metaplasticity in behavior and disease. Trends Neurosci 36:353–362CrossRefPubMedGoogle Scholar
  27. Ikeda T, Kurosawa M, Uchikawa C, Kitayama S, Nukina N (2005) Modulation of monoamine transporter expression and function by repetitive transcranial magnetic stimulation. Biochem Biophys Res Commun 327:218–224CrossRefPubMedGoogle Scholar
  28. James W (1890) The principles of psychology. Henry Holt & Co., New YorkCrossRefGoogle Scholar
  29. Ji RR, Schlaepfer TE, Aizenman CD, Epstein CM, Qiu D, Huang JC, Rupp F (1998) Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proc Natl Acad Sci U S A 95:15635–15640PubMedCentralCrossRefPubMedGoogle Scholar
  30. Keck ME, Welt T, Müller MB, Erhardt A, Ohl F, Toschi N, Holsboer F, Sillaber I (2002) Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neuropharmacology 43:101–109CrossRefPubMedGoogle Scholar
  31. Kerchner GA, Nicoll RA (2008) Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev Neurosci 9:813–825PubMedCentralCrossRefPubMedGoogle Scholar
  32. Kole MH, Fuchs E, Ziemann U, Paulus W, Ebert U (1999) Changes in 5-HT1A and NMDA binding sites by a single rapid transcranial magnetic stimulation procedure in rats. Brain Res 826:309–312CrossRefPubMedGoogle Scholar
  33. Korchounov A, Ziemann U (2011) Neuromodulatory neurotransmitters influence LTP-like plasticity in human cortex: a pharmaco-TMS study. Neuropsychopharmacology 36:1894–1902PubMedCentralCrossRefPubMedGoogle Scholar
  34. Kozyrev V, Eysel UT, Jancke D (2014) Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. Proc Natl Acad Sci U S A 111:13553–13558PubMedCentralCrossRefPubMedGoogle Scholar
  35. Labedi A, Benali A, Mix A, Neubacher U, Funke K (2014) Modulation of inhibitory activity markers by intermittent theta-burst stimulation in rat cortex is NMDA-receptor dependent. Brain Stimulation 7:394–400CrossRefPubMedGoogle Scholar
  36. Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206Google Scholar
  37. Lenz M, Platschek S, Priesemann V, Becker D, Willems LM, Ziemann U, Deller T, Müller-Dahlhaus F, Jedlicka P, Vlachos A (2015) Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Struct Funct 220:3323–3337Google Scholar
  38. Leuner B, Shors TJ (2013) Stress, anxiety, and dendritic spines: what are the connections? Neuroscience 251:108–119CrossRefPubMedGoogle Scholar
  39. Levkovitz Y, Marx J, Grisaru N, Segal M (1999) Long-term effects of transcranial magnetic stimulation on hippocampal reactivity to afferent stimulation. J Neurosci 19:3198–3203PubMedGoogle Scholar
  40. Loebrich S, Nedivi E (2009) The function of activity-regulated genes in the nervous system. Physiol Rev 89:1079–1103PubMedCentralCrossRefPubMedGoogle Scholar
  41. Ma J, Zhang Z, Su Y, Kang L, Geng D, Wang Y, Luan F, Wang M, Cui H (2013) Magnetic stimulation modulates structural synaptic plasticity and regulates BDNF-TrkB signal pathway in cultured hippocampal neurons. Neurochem Int 62:84–91CrossRefPubMedGoogle Scholar
  42. Maggio N, Vlachos A (2014) Synaptic plasticity at the interface of health and disease: new insights on the role of endoplasmic reticulum intracellular calcium stores. Neuroscience 281C:135–146Google Scholar
  43. Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574CrossRefPubMedGoogle Scholar
  44. Mardones P, Martínez G, Hetz C (2014) Control of systemic proteostasis by the nervous system. Trends Cell Biol. pii: S0962-8924(14)00123-8Google Scholar
  45. Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215CrossRefPubMedGoogle Scholar
  46. Mix A, Benali A, Funke K (2014) Strain differences in the effect of rTMS on cortical expression of calcium-binding proteins in rats. Exp Brain Res 232:435–442CrossRefPubMedGoogle Scholar
  47. Mix A, Hoppenrath K, Funke K (2015) Reduction in cortical parvalbumin expression due to intermittent theta-burst stimulation correlates with maturation of the perineuronal nets in young rats. Dev Neurobiol 75:1–11Google Scholar
  48. Moxon KA, Oliviero A, Aguilar J, Foffani G (2014) Cortical reorganization after spinal cord injury: Always for good? Neuroscience 283:78–94Google Scholar
  49. Müller MB, Toschi N, Kresse AE, Post A, Keck ME (2000) Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology 23:205–215CrossRefPubMedGoogle Scholar
  50. Muller PA, Dhamne SC, Vahabzadeh-Hagh AM, Pascual-Leone A, Jensen FE, Rotenberg A (2014) Suppression of motor cortical excitability in anesthetized rats by low frequency repetitive transcranial magnetic stimulation. PLoS One 9, e91065PubMedCentralCrossRefPubMedGoogle Scholar
  51. Müller-Dahlhaus F, Vlachos A (2013) Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation. Front Mol Neurosci 6:50PubMedCentralCrossRefPubMedGoogle Scholar
  52. Nava E, Röder B (2011) Adaptation and maladaptation insights from brain plasticity. Prog Brain Res 191:177–194CrossRefPubMedGoogle Scholar
  53. Nitsche MA, Müller-Dahlhaus F, Paulus W, Ziemann U (2012) The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs. J Physiol 590:4641–4662PubMedCentralCrossRefPubMedGoogle Scholar
  54. Okada K, Matsunaga K, Yuhi T, Kuroda E, Yamashita U, Tsuji S (2002) The long-term high-frequency repetitive transcranial magnetic stimulation does not induce mRNA expression of inflammatory mediators in the rat central nervous system. Brain Res 957:37–41CrossRefPubMedGoogle Scholar
  55. Okuno H (2011) Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci Res 69:175–186CrossRefPubMedGoogle Scholar
  56. Opitz A, Windhoff M, Heidemann RM, Turner R, Thielscher A (2011) How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. Neuroimage 58:849–859CrossRefPubMedGoogle Scholar
  57. Papa M, De Luca C, Petta F, Alberghina L, Cirillo G (2014) Astrocyte-neuron interplay in maladaptive plasticity. Neurosci Biobehav Rev 42:35–54CrossRefPubMedGoogle Scholar
  58. Pashut T, Magidov D, Ben-Porat H, Wolfus S, Friedman A, Perel E, Lavidor M, Bar-Gad I, Yeshurun Y, Korngreen A (2014) Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation. Front Cell Neurosci 8:145PubMedCentralCrossRefPubMedGoogle Scholar
  59. Pozo K, Goda Y (2010) Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66:337–351PubMedCentralCrossRefPubMedGoogle Scholar
  60. Premoli I, Castellanos N, Rivolta D, Belardinelli P, Bajo R, Zipser C, Espenhahn S, Heidegger T, Müller-Dahlhaus F, Ziemann U (2014) TMS-EEG signatures of GABAergic neurotransmission in the human cortex. J Neurosci 34:5603–5612CrossRefPubMedGoogle Scholar
  61. Rodger J, Mo C, Wilks T, Dunlop SA, Sherrard RM (2012) Transcranial pulsed magnetic field stimulation facilitates reorganization of abnormal neural circuits and corrects behavioral deficits without disrupting normal connectivity. FASEB J 26:1593–1606CrossRefPubMedGoogle Scholar
  62. Rotem A, Moses E (2008) Magnetic stimulation of one-dimensional neuronal cultures. Biophys J 94:5065–5078PubMedCentralCrossRefPubMedGoogle Scholar
  63. Rusu CV, Murakami M, Ziemann U, Triesch J (2014) A model of TMS-induced I-waves in motor cortex. Brain Stimulation 7:401–414CrossRefPubMedGoogle Scholar
  64. Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919–926CrossRefPubMedGoogle Scholar
  65. Smeyne RJ, Schilling K, Robertson L, Luk D, Oberdick J, Curran T, Morgan JI (1992) fos-lacZ transgenic mice: mapping sites of gene induction in the central nervous system. Neuron 8:13–23CrossRefPubMedGoogle Scholar
  66. Stock M, Kirchner B, Waibler D, Cowley DE, Pfaffl MW, Kuehn R (2012) Effect of magnetic stimulation on the gene expression profile of in vitro cultured neural cells. Neurosci Lett 526:122–127CrossRefPubMedGoogle Scholar
  67. Swann JW, Rho JM (2014) How is homeostatic plasticity important in epilepsy? Adv Exp Med Biol 813:123–131CrossRefPubMedGoogle Scholar
  68. Sykes M, Makowiecki K, Rodger J (2013) Long term delivery of pulsed magnetic fields does not alter visual discrimination learning or dendritic spine density in the mouse CA1 pyramidal or dentate gyrus neurons. F1000Res 2:180PubMedCentralPubMedGoogle Scholar
  69. Thirugnanasambandam N, Grundey J, Paulus W, Nitsche MA (2011) Dose-dependent nonlinear effect of L-DOPA on paired associative stimulation-induced neuroplasticity in humans. J Neurosci 31:5294–5299CrossRefPubMedGoogle Scholar
  70. Tokay T, Holl N, Kirschstein T, Zschorlich V, Köhling R (2009) High-frequency magnetic stimulation induces long-term potentiation in rat hippocampal slices. Neurosci Lett 461:150–154Google Scholar
  71. Trippe J, Mix A, Aydin-Abidin S, Funke K, Benali A (2009) θ burst and conventional low-frequency rTMS differentially affect GABAergic neurotransmission in the rat cortex. Exp Brain Res 199:411–421CrossRefPubMedGoogle Scholar
  72. Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422–435PubMedCentralCrossRefPubMedGoogle Scholar
  73. Vahabzadeh-Hagh AM, Muller PA, Gersner R, Zangen A, Rotenberg A (2012) Translational neuromodulation: approximating human transcranial magnetic stimulation protocols in rats. Neuromodulation 15:296–305CrossRefPubMedGoogle Scholar
  74. Vlachos A, Müller-Dahlhaus F, Rosskopp J, Lenz M, Ziemann U, Deller T (2012) Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci 32:17514–17523CrossRefPubMedGoogle Scholar
  75. Volz LJ, Benali A, Mix A, Neubacher U, Funke K (2013) Dose-dependence of changes in cortical protein expression induced with repeated transcranial magnetic theta-burst stimulation in the rat. Brain Stimulation 6:598–606CrossRefPubMedGoogle Scholar
  76. Wang HY, Crupi D, Liu J, Stucky A, Cruciata G, Di Rocco A, Friedman E, Quartarone A, Ghilardi MF (2011) Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte. J Neurosci 31:11044–11054PubMedCentralCrossRefPubMedGoogle Scholar
  77. Winkelmann A, Maggio N, Eller J, Caliskan G, Semtner M, Häussler U, Jüttner R, Dugladze T, Smolinsky B, Kowalczyk S, Chronowska E, Schwarz G, Rathjen FG, Rechavi G, Haas CA, Kulik A, Gloveli T, Heinemann U, Meier JC (2014) Changes in neural network homeostasis trigger neuropsychiatric symptoms. J Clin Invest 124:696–711PubMedCentralCrossRefPubMedGoogle Scholar
  78. Zangen A, Hyodo K (2002) Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens. Neuroreport 13:2401–2405CrossRefPubMedGoogle Scholar
  79. Zenonos G, Richardson M (2014) Maladaptive plasticity and memory decline in temporal lobe epilepsy. Neurosurgery 75:N12–N14CrossRefPubMedGoogle Scholar
  80. Ziemann U, Paulus W, Nitsche MA, Pascual-Leone A, Byblow WD, Berardelli A, Siebner HR, Classen J, Cohen LG, Rothwell JC (2008) Consensus: motor cortex plasticity protocols. Brain Stimulation 1:164–182CrossRefPubMedGoogle Scholar
  81. Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Müller-Dahlhaus F (2015) TMS & drugs revisited. Clin Neurophysiol 126:1847–1868Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maximilian Lenz
    • 1
  • Florian Müller-Dahlhaus
    • 2
  • Andreas Vlachos
    • 1
    Email author
  1. 1.Institute of Clinical NeuroanatomyNeuroscience Center, Goethe-UniversityFrankfurt am MainGermany
  2. 2.Department of Neurology and StrokeEberhard-Karls-UniversityTübingenGermany

Personalised recommendations