Skip to main content

Cartographic Enrichment of 3D City Models—State of the Art and Research Perspectives

  • Chapter
  • First Online:
Advances in 3D Geoinformation

Abstract

This paper reports on cartographic enrichments of three dimensional geovirtual environments including the representation of 3D city models. In the recent years 3D city models have become effective and powerful tools that support the simulation and visualization of our real world in a more and more realistic and detailed way. At the same time, there is a growing interest in comprising more information in the virtual living environment in addition to interior and exterior geometric features, roof and facade textures. A lot of information is related to houses, floors, flats, rooms, etc. but also to persons or specific features at certain urban locations. The paper presents the state of the art of cartographic principles in 3D city models, discusses approaches of cartographic enrichments with the aim to bring added values to the visual exploration of 3D geovirtual environments and reveals missing cartographic design rules within this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bak, P., Omer, I., & Schreck, T. (2010). Visual analytics of urban environments using high-resolution geographic data. In M. Painho, Y. S. Santos and H. Pundt (Eds.), Geospatial Thinking. Springer.

    Google Scholar 

  • Bandrova, T. (2001). Designing of symbol system for 3D city maps. In 20th International Cartographic Conference (pp. 1002–1010).

    Google Scholar 

  • Batty, M., & Hudson-Smith, A. (2014). Visual Analytics for Urban Design.

    Google Scholar 

  • Beck, M. (2003). Real-time visualization of big 3D city models. International Archives of the Photogrammetry Sensing and Spatial Information Sciences, 34.

    Google Scholar 

  • Biljecki, F., Ledoux, H., Stoter, J., & Zhao, J. (2014). Formalisation of the level of detail in 3D city modelling. Computers, Environment and Urban Systems, 48, 1–15.

    Article  Google Scholar 

  • Bleisch, S. (2012). 3D geovisualization-definition and structures for the assessment of usefulness. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, 129–134.

    Article  Google Scholar 

  • Bleisch, S., Dykes, J., & Nebiker, S. (2008). Evaluating the effectiveness of representing numeric information through abstract graphics in 3D desktop virtual environments. The Cartographic Journal, 45, 216–226.

    Article  Google Scholar 

  • Brewer, C. A., & Buttenfield, B. P. (2007). Framing guidelines for multi-scale map design using databases at multiple resolutions. Cartography and Geographic Information Science, 34, 3–15.

    Article  Google Scholar 

  • Bunch, R. L., & Lloyd, R. E. (2006). The cognitive load of geographic information. The Professional Geographer, 58, 209–220.

    Article  Google Scholar 

  • Caquard, S., & Cartwright, W. (2014). Narrative cartography: From mapping stories to the narrative of maps and mapping. The Cartographic Journal, 51, 101–106.

    Article  Google Scholar 

  • Cole, F., DeCarlo, D., Finkelstein, A., Kin, K., Morley, R. K., & Santella, A. (2006). Directing gaze in 3D models with stylized focus. In 17th Rendering Techniques 2006.

    Google Scholar 

  • De Amicis, R., Conti, G., Simões, B., Lattuca, R., Tosi, N., Piffer, S., et al. (2009). Geo-visual analytics for urban design in the context of future internet. International Journal on Interactive Design and Manufacturing (IJIDeM), 3, 55–63.

    Article  Google Scholar 

  • Debiasi, A., Prandi, F., Conti, G., De Amicis, R., & Stojanović, R. (2013). Visual analytics tool for urban traffic simulation. In Proceedings of the 6th International ICST Conference on Simulation Tools and Techniques. ICST (pp. 51–56).

    Google Scholar 

  • Döllner, J., Baumann, K., & Buchholz, H. (2006). Virtual 3D city models as foundation of complex urban information spaces. In 11th international conference on Urban Planning and Spatial Development in the Information Society (REAL CORP), Essen, Germany (pp. 107–112).

    Google Scholar 

  • Döllner, J., & Buchholz, H. (2005a). Continuous level-of-detail modeling of buildings in 3D city models. In Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems (pp. 173–181). ACM.

    Google Scholar 

  • Döllner, J., & Buchholz, H. (2005b). Non-photorealism in 3D geovirtual environments (pp. 1–14). Las Vegas: Proceedings of AutoCarto.

    Google Scholar 

  • Döllner, J., Hagedorn, B., & Klimke, J. (2012). Server-based rendering of large 3D scenes for mobile devices using G-buffer cube maps. In Proceedings of the 17th International Conference on 3D Web Technology (pp. 97–100). ACM, Los Angeles, California.

    Google Scholar 

  • Döllner, J., & Kyprianidis, J. E. (2010). Approaches to image abstraction for photorealistic depictions of virtual 3D models. Springer.

    Google Scholar 

  • Döllner, J., & Walther, M. (2003). Real-time expressive rendering of city models. In Seventh International Conference on Information Visualization (pp. 245–250). IEEE.

    Google Scholar 

  • Dykes, J., Andrienko, G., Andrienko, N., Paelke, V., & Schiewe, J. (2010). Editorial–GeoVisualization and the digital city. Computers, Environment and Urban Systems, 34, 443–451.

    Article  Google Scholar 

  • Dykes, J., Moore, K., & Fairbairn, D. (1999). From Chernoff to Imhof and beyond: VRML and cartography. In Proceedings of the Fourth Symposium on Virtual Reality Modeling Language (pp. 99–104). ACM.

    Google Scholar 

  • Fan, H. (2010). Integration of time-dependent features within 3D city model (p. 2010). München: Techn. Univ., Diss.

    Google Scholar 

  • Fan, H., & Meng, L. (2009). Automatic derivation of different levels of detail for 3D buildings modelled by CityGML. In 24th International Cartography Conference, Santiago, Chile (pp. 15–21).

    Google Scholar 

  • Gershon, N. (1998). Visualization of an imperfect world. Computer Graphics and Applications, IEEE, 18, 43–45.

    Article  Google Scholar 

  • Glander, T. (2013). Multi-scale representations of virtual 3D city models. Hasso-Plattner-Institute (HPI). Universität Potsdam.

    Google Scholar 

  • Glander, T., & Döllner, J. (2009). Abstract representations for interactive visualization of virtual 3D city models. Computers, Environment and Urban Systems, 33, 375–387.

    Article  Google Scholar 

  • Gooch, A., Gooch, B., Shirley, P., & Cohen, E. (1998). A non-photorealistic lighting model for automatic technical illustration. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques (pp. 447–452). ACM.

    Google Scholar 

  • Gooch, B., & Gooch, A. (2001). Non-photorealistic rendering. AK Peters/CRC Press.

    Google Scholar 

  • Griethe, H., & Schumann, H. (2006). The visualization of uncertain data: Methods and problems. In SimVis (pp. 143–156).

    Google Scholar 

  • Häberling, C., Bär, H., & Hurni, L. (2008). Proposed cartographic design principles for 3D maps: a contribution to an extended cartographic theory. Cartographica: The International Journal for Geographic Information and Geovisualization, 43, 175–188.

    Google Scholar 

  • Hagedorn, B., Trapp, M., Glander, T., & Dollner, J. (2009). Towards an indoor level-of-detail model for route visualization. In Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, 2009. MDM’09 (pp. 692–697). IEEE.

    Google Scholar 

  • Hake, G., Grünreich, D., & Meng, L. (2002). Kartographie. Visualisierung raum-zeitlicher Informationen (8. Ausgabe). Berlin/New York: DeGruyter.

    Google Scholar 

  • Hayakawa, S. I. (1967). Semantik: sprache im denken und handeln. Verlag Darmstädter Blätter.

    Google Scholar 

  • Hermann, F., & Peissner, M. (2003). Usability Engineering für kartographische Visualisierungen-Methoden und Verfahren. KN, 2003(6), 260–265.

    Google Scholar 

  • Huang, Z., Feng, X., Xuan, W., & Chen, X. (2007). Causal relations among events and states in dynamic geographical phenomena. In Geoinformatics 2007 (pp. 67531J-67531J-67538). International Society for Optics and Photonics.

    Google Scholar 

  • Jahnke, M. (2013). Nicht-photorealismus in der stadtmodellvisualisierung für mobile nutzungskontexte. Technische Universität München.

    Google Scholar 

  • Jahnke, M., Berger, T., & Krisp, J. (2011a). Nicht fotorealistische Darstellung von 3D-Stadtmodellen. HMD Praxis der Wirtschaftsinformatik, 48, 101–112.

    Article  Google Scholar 

  • Jahnke, M., Krisp, J. M., & Kumke, H. (2011b). How many 3D city models are there?—A typological try. The Cartographic Journal, 48, 124–130.

    Article  Google Scholar 

  • Jobst, M., & Döllner, J. (2008). Better perception of 3D-spatial relations by viewport variations. Springer.

    Google Scholar 

  • Kada, M. (2002). Automatic generalization of 3D building models. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34, 243–248.

    Google Scholar 

  • Klanten, R., & Losowsky, A. (2011). Visual storytelling: Inspiring a new visual language. Gestalten Berlin.

    Google Scholar 

  • Kolbe, T. H. (2009). Representing and exchanging 3D city models with CityGML, 3D geo-information sciences (pp. 15–31). Springer.

    Google Scholar 

  • Kumke, H. (2011). Kartographische Anreicherung von Gebäudefassaden mit thermalen Bilddaten. München, Technische Universität München, Dissertation, 2011.

    Google Scholar 

  • Lorenz, H., Trapp, M., Döllner, J., & Jobst, M. (2008). Interactive multi-perspective views of virtual 3D landscape and city models (pp. 301–321). The European Information Society. Springer.

    Google Scholar 

  • Löwner, M.-O., Benner, J., Gröger, G., & Häfele, K.-H. (2013). New concepts for structuring 3D city models—an extended level of detail concept for CityGML buildings. In Computational Science and Its Applications–ICCSA 2013 (pp. 466–480). Springer.

    Google Scholar 

  • Maass, S., & Döllner, J. (2007). Embedded labels for line features in interactive 3D virtual environments. In Proceedings of the 5th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa (pp. 53–59). ACM.

    Google Scholar 

  • MacEachren, A. M. (1995). How maps work: Representation, visualization, and design. The Guilford Press.

    Google Scholar 

  • MacEachren, A. M., Robinson, A., Hopper, S., Gardner, S., Murray, R., Gahegan, M., et al. (2005). Visualizing geospatial information uncertainty: What we know and what we need to know. Cartography and Geographic Information Science, 32, 139–160.

    Article  Google Scholar 

  • Mao, B., Ban, Y., & Harrie, L. (2009). A framework for generalization of 3D city models based on CityGML and X3D. ISPRS Workshop on Quality, Scale and Analysis Aspects of Urban City Models.

    Google Scholar 

  • Mayhew, D. J. (1999). The usability engineering lifecycle: A practitioner’s handbook for user interface design (pp. 59–60). Interactions-New York.

    Google Scholar 

  • McMaster, R. B., & Shea, K. S. (1992). Generalization in digital cartography. DC: Association of American Geographers Washington.

    Google Scholar 

  • Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum, Photonics for industrial applications (pp. 282–292). International Society for Optics and Photonics.

    Google Scholar 

  • Murphy, C. E. (2014). Concise image maps—A design approach, Department of Cartography. Technische Universität München, Munich, p. 152.

    Google Scholar 

  • Pang, A. (2001). Visualizing uncertainty in geo-spatial data. In Proceedings of the Workshop on the Intersections between Geospatial Information and Information Technology (pp. 1–14).

    Google Scholar 

  • Pasewaldt, S., Semmo, A., Trapp, M., & Döllner, J. (2012). Towards comprehensible digital 3d maps. In M. Jobst (Ed.), Service-Oriented Mapping 2012 (SOMAP2012) (pp. 261–276). Wien: Jobstmedia Management Verlag.

    Google Scholar 

  • Pasewaldt, S., Trapp, M., & Döllner, J. (2011). Multiscale visualization of 3D geovirtual environments using view-dependent multi-perspective views. Journal of WSCG, 19, 111–118.

    Google Scholar 

  • Pegg, D. (2013). Design issues with 3D maps and the need for 3D cartographic design principles.

    Google Scholar 

  • Peters, S. (2014). Dynamics of spatially extended phenomena. Technische Universität München.

    Google Scholar 

  • Petrovič, D. (2003). Cartographic design in 3D maps. In 21st International Cartographic Conference (ICC), Durban, South Africa.

    Google Scholar 

  • Petrovič, D., & Mašera, P. (2005). Analysis of user’s response on 3D cartographic presentations. In Proceedings of the 22nd ICA International Cartographic Conference, A Coruña, Spain.

    Google Scholar 

  • Pimenta, S., & Poovaiah, R. (2010). On defining visual narratives. Design Thoughts, 25–46.

    Google Scholar 

  • Roberts, L. (2014). The bulger case: A spatial story. The Cartographic Journal, 51(2), 41–151.

    Google Scholar 

  • Rückemann, C.-P. (2014). Knowledge processing for geosciences, volcanology, and spatial sciences employing universal classification. In GEOProcessing 2014, The Sixth International Conference on Advanced Geographic Information Systems, Applications, and Services (pp. 76–82).

    Google Scholar 

  • Segel, E., & Heer, J. (2010). Narrative visualization: Telling stories with data. Visualization and Computer Graphics, IEEE Transactions on, 16, 1139–1148.

    Article  Google Scholar 

  • Semmo, A., Hildebrandt, D., Trapp, M., & Döllner, J. (2012a). Concepts for cartography-oriented visualization of virtual 3D city models. Photogrammetrie-Fernerkundung-Geoinformation, 2012, 455–465.

    Google Scholar 

  • Semmo, A., Trapp, M., Kyprianidis, J. E., & Döllner, J. (2012b). Interactive visualization of generalized virtual 3D city models using level‐of‐abstraction transitions. In Computer Graphics Forum (pp. 885–894). Wiley Online Library.

    Google Scholar 

  • Slocum, T. A., Blok, C., Jiang, B., Koussoulakou, A., Montello, D. R., Fuhrmann, S., et al. (2001). Cognitive and usability issues in geovisualization. Cartography and Geographic Information Science, 28, 61–75.

    Article  Google Scholar 

  • Slocum, T. A., McMaster, R. B., Kessler, F. C., & Howard, H. H. (2009). Thematic cartography and geovisualization. NJ: Pearson Prentice Hall Upper Saddle River.

    Google Scholar 

  • Straumann, R. K., Çöltekin, A., & Andrienko, G. (2014). Towards (re) constructing narratives from georeferenced photographs through visual analytics. The Cartographic Journal, 51, 152–165.

    Article  Google Scholar 

  • Strothotte, T., & Schlechtweg, S. (2002). Non-photorealistic computer graphics: Modeling, rendering, and animation. Elsevier.

    Google Scholar 

  • Tempfli, K., & Pilouk, M. (1996). Practicable photogrammetry for 3D-GIS. International Archives of Photogrammetry and Remote Sensing, 31, 859–867.

    Google Scholar 

  • Thomas, J. J., & Cook, K. A. (2005). Illuminating the path: The research and development agenda for visual analytics. IEEE Computer Society Press.

    Google Scholar 

  • Trapp, M., Glander, T., Buchholz, H., & Dolner, J. (2008). 3D generalization lenses for interactive focus + context visualization of virtual city models. In 12th International Conference Information Visualisation, 2008. IV’08 (pp. 356–361). IEEE.

    Google Scholar 

  • Vaaraniemi, M., Freidank, M., & Westermann, R. (2013). Enhancing the visibility of labels in 3D navigation maps. In Progress and New Trends in 3D Geoinformation Sciences (pp. 23–40). Springer.

    Google Scholar 

  • Ware, C. (2010). Visual thinking: For design. Burlington, MA, USA: Elsevier Science.

    Google Scholar 

  • Waser, J., Konev, A., Sadransky, B., Horváth, Z., Ribičić, H., Carnecky, R., et al. (2014). Many plans: Multidimensional ensembles for visual decision support in flood management. In Computer Graphics Forum (pp. 281–290). Wiley Online Library.

    Google Scholar 

  • Willmott, J., Wright, L., Arnold, D. B., & Day, A. (2001). Rendering of large and complex urban environments for real time heritage reconstructions. In Proceedings of the 2001 Conference on Virtual Reality, Archeology, and Cultural Heritage (pp. 111–120). ACM.

    Google Scholar 

  • Wilson, T. (2008). OGC KML. OGC Encoding Standard, Version 2.2.0, OGC Doc. No. 07-147r2, Open Geospatial Consortium.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Peters, S., Jahnke, M., Murphy, C.E., Meng, L., Abdul-Rahman, A. (2017). Cartographic Enrichment of 3D City Models—State of the Art and Research Perspectives. In: Abdul-Rahman, A. (eds) Advances in 3D Geoinformation. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-25691-7_12

Download citation

Publish with us

Policies and ethics