Advertisement

Plants Shape the Terrestrial Environment on Earth: Challenges of Management for Sustainability

  • Ulrich LüttgeEmail author
Chapter
Part of the Progress in Botany book series (BOTANY, volume 77)

Abstract

Plants tend to occupy any suitable space available on Earth. They shape the inorganic terrestrial environment in a dynamic way through the geological ages. They affect the climate. They impact—with manifold kinds of biotic interactions—on the evolution of animals and microorganisms. They are the dominating primary producers of biomass on Earth and feed the other organisms. The Gaia concept of James Lovelock considers the entire biosphere as a supraorganism and postulates self-sustained stability. Plants play a major role in such self-management of nature. Natural self-management is juxtaposed with anthropogenic management, the former tending to sustain, the latter to exploit the biosphere. Anthropogenic management comprises agriculture and forestry. With relations to plants, the greatest challenge is intensified agriculture to feed 9.6 billion people by the year 2050. Faced with limited and declining resources, pollution, exploratory land use, sociopolitical ideologies, and by unavoidably contributing to some of these problems itself, agriculture is running into vicious cycles. Can agriculture and forestry learn from ecology? To which extent can ecological principles be introduced to them for securing sustained stability of productivity? Man assumes he “is the possessor of the planet, if not the owner,” rather than the “tenant.” Conversely, “the Gaia hypothesis implies that the stable state of our planet includes man as a part of, or partner in, a very democratic entity” (Lovelock, Gaia: A new look at life on Earth. Oxford University Press, Oxford, 1979). Can natural self-management and anthropogenic management be harmonized, given that mankind learns to conceive itself as part rather than owner of nature?

Keywords

Agriculture Agroecology Biosphere Competition Diversity Facilitation Forestry Gaia Intercropping Pioneer species Plasticity 

Notes

Acknowledgment

I thank Rainer Matyssek for critically reading the manuscript and for many valuable comments.

References

  1. Ainsworth EA, Rogers A, Leakey DB (2008) Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol 147:13–19PubMedPubMedCentralCrossRefGoogle Scholar
  2. Altieri M (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31CrossRefGoogle Scholar
  3. Amzallag GN (2001) Data analysis in plant physiology: are we missing the reality? Plant Cell Environ 24:881–890CrossRefGoogle Scholar
  4. Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586CrossRefGoogle Scholar
  5. Atsatt PR, O’Dowd DJ (1976) Plant defense guilds. Science 193:24–29PubMedCrossRefGoogle Scholar
  6. Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156PubMedCrossRefGoogle Scholar
  7. Bedoussac L, Justes E (2010) The efficiency of durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 330:19–35CrossRefGoogle Scholar
  8. Bertness MD, Callaway RM (1994) Positive interactions in communities. Trend Ecol Evol 9:191–193CrossRefGoogle Scholar
  9. Blüthgen N, Klein A-M (2011) Functional complementarity and specialization: the role of biodiversity in plant pollinator interactions. Basic Appl Ecol 12:282–291CrossRefGoogle Scholar
  10. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449PubMedCrossRefGoogle Scholar
  11. Brooker RW, Maestre MT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present and the future. J Ecol 96:18–34CrossRefGoogle Scholar
  12. Brookes G, Barfoot P (2006) Global impact of biotech crops: socio-economic and environmental effects in the first years of commercial use. Ag Bio Forum 9:139–151Google Scholar
  13. Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125CrossRefGoogle Scholar
  14. Bruns HA (2014) Stacked gene hybrids were not found to be superior to glyphosate-resistant or non-GMO corn hybrids. Crop Manag 13. doi:10.2134/CM-2013-0012-RSGoogle Scholar
  15. Bünnemann EK, Oberson A, Frossard E (eds) (2011) Phosphorus in action: biological processes in soil phosphorus cycling, vol 26, Soil biology. Springer, HeidelbergGoogle Scholar
  16. Cahill JF (2013) Plant competition: can understanding trait-behavior linkages offer a new perspective on very old questions? In: Matyssek R, Lüttge U, Rennenberg H (eds) The alternatives growth and defense: resource allocation at multiple scales in plants. Nova Acta Leopoldina 114(391): 115–125Google Scholar
  17. Caldwell MM, Richards JH (1989) Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79:1–5CrossRefGoogle Scholar
  18. Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349CrossRefGoogle Scholar
  19. Callaway RM (1998) Competition and facilitation on elevation gradients in subalpine forests of the northern Rocky Mountains, USA. Oikos 82:561–573CrossRefGoogle Scholar
  20. Callaway RM (2013) Facilitation, competition and the organization of plant communities. In: Matyssek R, Lüttge U, Rennenberg H (eds) The alternatives growth and defense: resource allocation at multiple scales in plants. Nova Acta Leopoldina 114(391): 147–157Google Scholar
  21. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848PubMedCrossRefGoogle Scholar
  22. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965CrossRefGoogle Scholar
  23. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457PubMedCrossRefGoogle Scholar
  24. Caprez R, Spehn E, Nakhutrishvili G, Körner C (2012) Drought at erosion edges selects for a “hidden” keystone species. Plant Ecol Divers. doi: 10.1080/17550874.2011.600343 Google Scholar
  25. Cassman KG, Liska AJ (2007) Food and Fuel for all: realistic or foolish? Biofuel Bioprod Bior 1:18–23CrossRefGoogle Scholar
  26. Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cisse L, Mrabet T (2004) World phosphate production: overview and prospects. Phosphorus Res Bull 15:212–225CrossRefGoogle Scholar
  28. Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 9:292–305CrossRefGoogle Scholar
  29. Cottingham KL, Brown BL, Lennon JT (2001) Biodiversity may regulate the temporal variability of ecological systems. Ecol Lett 4:72–85CrossRefGoogle Scholar
  30. Dangles O, Herrera M, Anthelme F (2013) Experimental support of the stress-gradient hypothesis in herbivore-herbivore interactions. New Phytol 197:405–408PubMedCrossRefGoogle Scholar
  31. Da Silva MC Jr, Scarano FR, De Souza CF (1995) Regeneration of an Atlantic forest formation in the understory of an Eucalyptus grandis plantation in south-eastern. Brazil J Trop Ecol 11:147–152CrossRefGoogle Scholar
  32. Davies TW, Jenkins SR, Kingham R, Hawkins SJ, Hiddink JG (2012) Extirpation-resistant species do not always compensate for the decline in ecosystem processes associated with biodiversity loss. J Ecol 100:1475–1481CrossRefGoogle Scholar
  33. Del Río M, Schütze G, Pretzsch H (2014) Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol 16:166–176PubMedCrossRefGoogle Scholar
  34. Dias ATC, Scarano FR (2007) Clusia as nurse plant. In: Lüttge U (ed) Clusia—a woody neotropical genus with remarkable plasticity and diversity. Springer, Heidelberg, pp 55–72Google Scholar
  35. Dias ATC, Bozelli RL, Darigo RM, Esteves FA, Santos HF, Figueiredo-Barros MP, Nunes MFQS, Roland F, Zamith LR, Scarano FR (2012) Rehabilitation of a bauxite tailing substrate in Central Amazonia: the effect of litter and seed addition on flood-prone forest restoration. Restor Ecol 20:483–489CrossRefGoogle Scholar
  36. Duarte HM, Gessler A, Scarano FR, Franco AC, de Mattos EA, Nahm M, Rennenberg H, Rodrigues PJFP, Zaluar HLT, Lüttge U (2005) Ecophysiology of six selected shrub species in different plant communities at the periphery of the Atlantic Forest of SE—Brazil. Flora 200:456–476CrossRefGoogle Scholar
  37. Durka W, Schulze E-D, Gebauer G, Voerkeliust S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767CrossRefGoogle Scholar
  38. Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 98:13763–13768PubMedPubMedCentralCrossRefGoogle Scholar
  39. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonCrossRefGoogle Scholar
  40. Fetene M, Beck E (2004) Water relations of indigenous versus exotic tree species, growing at the same site in a tropical montane forest in southern Ethiopia. Trees 18:428–435CrossRefGoogle Scholar
  41. Feyera S, Beck E, Lüttge U (2002) Exotic trees as nurse-trees for the regeneration of natural tropical forests. Trees 16:245–249CrossRefGoogle Scholar
  42. Franco AC, Nobel PS (1989) Effect of nurse plants on the microhabitat and growth of cacti. J Ecol 77:870–886CrossRefGoogle Scholar
  43. Fründ J, Linsenmair KE, Blüthgen N (2010) Pollinator diversity and specialization in relation to flower diversity. Oikos 119:1581–1590CrossRefGoogle Scholar
  44. Gehrig H, Gaussmann O, Marx H, Schwarzott D, Kluge M (2001) Molecular phylogeny of the genus Kalanchoë (Crassulaceae) inferred from the nucleotide sequences of the IST-1 and IST-2 regions. Plant Sci 160:827–835PubMedCrossRefGoogle Scholar
  45. Geldenhuys CJ (1997) Native forest regeneration in pine and eucalypt plantations in Northern Province, South Africa. For Ecol Manag 99:101–115CrossRefGoogle Scholar
  46. Gould JG (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, MAGoogle Scholar
  47. Grams TEE (2013) A space-related perspective on plant-plant competition. In: Matyssek R, Lüttge U, Rennenberg H (eds) The alternatives growth and defense: resource allocation at multiple scales in plants. Nova Acta Leopoldina 114(391): 127–134Google Scholar
  48. Grams TEE, Lüttge U (2011) Space as a resource. Prog Bot 72:349–370CrossRefGoogle Scholar
  49. Grams TEE, Daigo MJ, Winkler JB, Gayler S, Matyssek R (2012) Growth and space use in competitive interactions between juvenile trees. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch H (eds) Growth and defence in plants. Resource allocation at multiple scales, vol 220, Ecological studies. Springer, Heidelberg, pp 273–286CrossRefGoogle Scholar
  50. Grünhage L, Matyssek R, Wieser G, Häberle K-H, Leuchner M, Menzel A, Dieler J, Pretzsch H, Grimmeisen W, Zimmermann L, Raspe S, Schröder M (2013) Flux based ozone risk assessment for adult beech and spruce forests. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam, pp 251–266CrossRefGoogle Scholar
  51. Haberl H, Körner C, Lauk C, Schmid-Staiger U, Smetacek V, Schulze E-D, Thauer RK, Weiland P, Wilson K (2012) The availability and sustainability of biomass as an energy source. In: Bioenergy—chances and limits. German National Academy of Sciences Leopoldina, Halle (Saale), www.leopoldina.org, pp 9–42
  52. Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG, Lambrinos JG, Talley TS, Wilson WG (2006) Ecosystem engineering in space and time. Ecol Lett 10:153–164CrossRefGoogle Scholar
  53. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze E-D, Siamantziouras A-SD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127PubMedCrossRefGoogle Scholar
  54. Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice—rationale and feasibility. Curr Opin Plant Biol 11:228–231PubMedCrossRefGoogle Scholar
  55. Hodge A (2009) Root decisions. Plant Cell Environ 32:628–640PubMedCrossRefGoogle Scholar
  56. Hodge A (2010) Roots: the acquisition of water and nutrients from the heterogeneous soil environment. Prog Bot 71:307–337CrossRefGoogle Scholar
  57. Höök M, Li J, Oba N, Snowden S (2011) Descriptive and predictive growth curves in energy system analysis. Nat Resour Res 20:103–116CrossRefGoogle Scholar
  58. Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68:121–149CrossRefGoogle Scholar
  59. Huck C, Körner C, Hitbrunner E (2013) Plant species dominance shifts across erosion edge-meadow grassland soils. Oecologia 171:693–703PubMedCrossRefGoogle Scholar
  60. Hütt M-T, Lüttge U (2005) Network dynamics in plant biology: current progress in historical perspective. Prog Bot 66:277–310CrossRefGoogle Scholar
  61. Keenan R, Lamb D, Woldring O, Irvine T, Jensen R (1997) Restoration of plant biodiversity beneath tropical tree plantations in Northern Australia. For Ecol Manag 99:117–131CrossRefGoogle Scholar
  62. King J, Liu L, Aspinwall M (2013) Tree and forest responses to interacting elevated atmospheric CO2 and tropospheric O3: a synthesis of experimental evidence. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam, pp 179–208CrossRefGoogle Scholar
  63. Knoke T, Hahn A (2013) Global change and the role of forests in future land-use systems. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Elsevier, Amsterdam, pp 569–588Google Scholar
  64. Körner C (2012) Biological diversity—the essence of life and ecosystem functioning. Nova Acta Leopoldina 116(394):147–159Google Scholar
  65. Körner C (2013) Growth controls photosynthesis—mostly. Nova Acta Leopoldina 114(391):273–283Google Scholar
  66. Kraft G (1884) Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Klindworth’s Verlag, HannoverGoogle Scholar
  67. Küppers M (1989) Ecological significance of above-ground architectural patterns in woody plants—a question of cost-benefit relationships. Trends Ecol Evol 4:375–379PubMedCrossRefGoogle Scholar
  68. Lacerda LD, Araujo DSD, Maciel NC (1993) Dry coastal ecosystems of the tropical Brazilian coast. In: van der Maarel E (ed) Dry coastal ecosystems: Africa; America, Asia and Oceania. Elsevier, Amsterdam, pp 477–493Google Scholar
  69. Lemenih M, Teketay D (2004) Restoration of native forest flora in the degraded highlands of Ethiopia: constraints and opportunities. Sinet Ethiop J Sci 27:75–90Google Scholar
  70. Leopoldina (2012) Bioenergy—chances and limits. German National Academy of Sciences Leopoldina, Halle (Saale),www.leopoldina.org Google Scholar
  71. Li L, Tilman D, Lambers H, Zhang F-S (2014) Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol 203:63–69PubMedCrossRefGoogle Scholar
  72. Lin Y, Berger U, Grimm V, Ji Q-R (2012) Differences between symmetric and asymmetric facilitation matter: exploring the interplay between modes of positive and negative plant interactions. J Ecol 100:1482–1491CrossRefGoogle Scholar
  73. Long S, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:241–248PubMedCrossRefGoogle Scholar
  74. Lovelock J (1979) Gaia. A new look at life on Earth. Oxford University Press, OxfordGoogle Scholar
  75. Lovelock J (2009) The vanishing face of Gaia—a final warning. Basic Books, New York, NYGoogle Scholar
  76. Lüttge U (1995a) Ecophysiological basis of the diversity of tropical plants: the example of the genus Clusia. In: Heinen HD, San José JJ, Caballero-Arias H (eds) Nature and human ecology in the neotropics. Scientia Guaianae 5:23–26Google Scholar
  77. Lüttge U (1995b) Clusia: Ein Modellfall der ökologischen Plastizität in einer tropischen Gattung. In: Rundgespräche der Kommission für Ökologie BAdW. 10: 173–186. Bayerische Tropenforschung einst und jetzt. Dr. Pfeil MünchenGoogle Scholar
  78. Lüttge U (2000) Photosynthese-Physiotypen unter gleichen Morphotypen, Spezies und bei Klonen: Kann ökophysiologische Plastizität zur Entstehung von Diversität beitragen? Ber Reinhold Tüxen Ges 12:319–334Google Scholar
  79. Lüttge U (2005) Genotypes—phenotypes—ecotypes: relations to crassulacean acid metabolism. Nova Acta Leopoldina 92(342):177–193Google Scholar
  80. Lüttge U (2008) Physiological ecology of tropical plants, 2nd edn. Springer, BerlinGoogle Scholar
  81. Lüttge U (2010) Struggle of plants with crassulacean acid metabolism (CAM) in topical environments under the action of dynamic networks of stressors. AoB PLANTS, 2010: 1–15. doi: 10.1093/aobpla/plq005. http://aobplants.oxfordjournals.org/
  82. Lüttge U (2013) The planet Earth: can it feed nine billion people? Nova Acta Leopoldina 114(391):345–364Google Scholar
  83. Lüttge U, Scarano FR (2004) Ecophysiology. Rev Bras Bot 27:1–10CrossRefGoogle Scholar
  84. Lüttge U, Scarano FR (2007) Synecological comparisons sustained by ecophysiological fingerprinting of intrinsic photosynthetic capacity of plants as assessed by measurements of light response curves. Braz J Bot 30:355–364CrossRefGoogle Scholar
  85. Lüttge U, Berg A, Fetene M, Nauke P, Peter D, Beck E (2003) Comparative characterization of photosynthetic performance and water relations of native trees and exotic plantation trees in an Ethiopian forest. Trees 17:40–50CrossRefGoogle Scholar
  86. Lüttge U, Garbin ML, Scarano FR (2013) Evo-devo-eco and ecological stem species: potential repair systems in the planetary biosphere crisis. Prog Bot 74:191–212CrossRefGoogle Scholar
  87. Lüttge U, Kluge M, Thiel G (2010) Botanik. Die umfassende Biologie der Pflanzen. Wiley-VCH, WeinheimGoogle Scholar
  88. Luyssaert S, Schulze E-D, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215PubMedCrossRefGoogle Scholar
  89. Maeder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697CrossRefGoogle Scholar
  90. Magnússon B, Magnússon SH, Fridriksson S (2009) Developments in plant colonization and succession on Surtsey during 1999–2008. Surtsey Res 12:57–76Google Scholar
  91. Masselter T, Bauer G, Gallenmüller F, Haushahn T, Poppinga S, Schmitt C, Seidel R, Speck O, Thielen M, Speck T (2012) Biomimetic products. In: Bar-Cohen Y (ed) Biomimetics. Nature-based innovation. CRC-Press, Boca Raton, FL, pp 377–429Google Scholar
  92. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509PubMedCrossRefGoogle Scholar
  93. Matyssek R, Lüttge U (2013) Gaia: the planet holobiont. Nova Acta Leopoldina 114(391):325–344Google Scholar
  94. Matyssek R, Fromm J, Rennenberg H, Roloff A (2010) Biologie der Bäume. Ulmer, StuttgartGoogle Scholar
  95. Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) (2013a) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, AmsterdamGoogle Scholar
  96. Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (2013b) Climate change, air pollution and global challenges: understanding and perspectives from forest research. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam, pp 3–16CrossRefGoogle Scholar
  97. Matyssek R, Wieser G, Fleischmann F, Grünhage L (2013c) Ozone research, quo vadis? Lessons from the free-air canopy fumigation experiment at Kranzberg Forest. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam, pp 103–129CrossRefGoogle Scholar
  98. Medina E, Cram WJ, Lee HSJ, Lüttge U, Popp M, Smith JAC, Diaz M (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. I. Site description and plant communities. New Phytol 111:233–243CrossRefGoogle Scholar
  99. Mitchell PL, Sheehy JE (2006) Supercharging rice photosynthesis to increase yield. New Phytol 171:688–693PubMedCrossRefGoogle Scholar
  100. Novoplansky A (2009) Picking battles wisely: plant behaviour under competition. Plant Cell Environ 32:726–741PubMedCrossRefGoogle Scholar
  101. Oberson A, Pypers P, Bünemann EK, Frossard E (2011) Management impacts on biological phosphorus cycling in cropped soils. In: Bünnemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling, vol 26, Soil biology. Springer, Heidelberg, pp 431–458CrossRefGoogle Scholar
  102. Oksanen E, Keski-Saari S, Kontunen-Soppela S, Keinänen M (2013) Metabolomics and transcriptomics increase our understanding about defence responses and genotypic differences of northern deciduous trees to elevating ozone, CO2 and climate warming. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam, pp 309–329CrossRefGoogle Scholar
  103. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993PubMedCrossRefGoogle Scholar
  104. Pandey V, Oksanen E, Singh N, Sharma C (2013) Impacts of air pollution and climate change on plants: implications for India. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges. Understanding and perspectives from forest research, vol 13, Developments in environmental sciences. Elsevier, Amsterdam, pp 391–409CrossRefGoogle Scholar
  105. Parrotta JA (1993) Secondary forest regeneration on degraded tropical lands. The role of plantations as “foster ecosystems”. In: Lieth H, Lohmann M (eds) Restoration of tropical forest ecosystems. Kluver, Dordrecht, pp 66–73Google Scholar
  106. Parrotta JA (1995) Influence of overstory composition on understory colonization by native species in plantations on a degraded tropical site. J Veg Sci 6:627–636CrossRefGoogle Scholar
  107. Pretzsch H (2010) Forest dynamics, growth and yield. Springer, HeidelbergCrossRefGoogle Scholar
  108. Pretzsch H (2013) Facilitation and competition in mixed-species forests analyzed along an ecological gradient. Nova Acta Leopoldina 114(391):159–174Google Scholar
  109. Pretzsch H, Roetzer T, Matyssek R, Grams TEE, Häberle K-H, Pritsch K (2014) Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanisms. Trees 28:1305–1321CrossRefGoogle Scholar
  110. Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence for stress release by inter-specific facilitation. Plant Biol 15:483–495PubMedCrossRefGoogle Scholar
  111. Que Q, Chilton M-DM, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1:220–229PubMedCrossRefGoogle Scholar
  112. Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918PubMedCrossRefGoogle Scholar
  113. Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1192–1208PubMedCrossRefGoogle Scholar
  114. Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489CrossRefGoogle Scholar
  115. Sage RF, Zhu X-G (2011) Exploiting the engine of C4 photosynthesis. J Exp Bot 62:2989–3000PubMedCrossRefGoogle Scholar
  116. Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rain forest. Ann Bot 90:517–524PubMedPubMedCentralCrossRefGoogle Scholar
  117. Scarano FR (2009) Plant communities at the periphery of the Atlantic rain forest: rare-species bias and its risks for conservation. Biol Conserv 142:1201–1208CrossRefGoogle Scholar
  118. Scarano FR, Rios RI, Esteves FA (1998) Tree species richness, diversity and flooding regime: case studies of recuperation after anthropic impact in Brazilian flood-prone forests. Int J Ecol Environ Sci 24:223–225Google Scholar
  119. Schenk HJ (2006) Root competition beyond resource depletion. J Ecol 94:725–739CrossRefGoogle Scholar
  120. Scherer-Lorenzen M, Körner C, Schulze E-D (eds) (2005) Forest diversity and function. Temperate and boreal systems, vol 176, Ecological studies. Springer, BerlinGoogle Scholar
  121. Scherrer D, Bader MKF, Körner C (2011) Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agric For Meteorol 151:1632–1640CrossRefGoogle Scholar
  122. Schläpfer F, Schmid B (1999) Ecosystem effects of biodiversity: a classification of hypotheses and exploration of empirical results. Ecol Appl 9:893–912CrossRefGoogle Scholar
  123. Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci USA 106:15594–15598PubMedPubMedCentralCrossRefGoogle Scholar
  124. Schulze E-D, Körner C (2012) Nettoprimärproduktion und Bioenergie. In: Bioenergy—chances and limits. German National Academy of Sciences Leopoldina, Halle (Saale), www.leopoldina.org, pp 90–100
  125. Solbrig OT (1994) Plant traits and adaptive strategies: their role in ecosystem function. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function, vol 99, Ecological studies. Springer, Berlin, pp 97–116CrossRefGoogle Scholar
  126. Souza GM, Lüttge U (2014) Stability as a phenomenon emergent from plasticity—complexity—diversity in eco-physiology. Prog Bot 76:211–239CrossRefGoogle Scholar
  127. Souza GM, Ribeiro RV, Prado CHBS, Damineli DSC, Sato M, Oliveira MS (2009) Using network connectance and autonomy analyses to uncover patterns of photosynthetic responses in tropical woody species. Ecol Complex 6:15–26CrossRefGoogle Scholar
  128. Speck T, Bauer G, Flues F, Oelker K, Rampf K, Schüssele AC, von Tapavicza M, Bertling J, Luchgsinger R, Nellesen A, Schmidt AM, Mühlhaupt R, Speck O (2013a) Bio-inspired self-healing materials. In: Fratzl P, Dunlop JWC, Weinkamer R (eds) RSC Smart materials No. 4. Materials design inspired by nature: function through inner architecture. The Royal Society of Chemistry, pp 359–389Google Scholar
  129. Speck T, Mühlhaupt R, Speck O (2013b) Self-healing in plants as bio-inspiration for self-repairing polymers. In: Binder WH (ed) Self-healing polymers. From principles to applications. Wiley-VCH, Weinheim, pp 61–89CrossRefGoogle Scholar
  130. Stanhill G (1990) The comparative productivity of organic agriculture. Agric Ecosyst Environ 30:1–26CrossRefGoogle Scholar
  131. Surridge C (2002) Agricultural biotech: the rice squad. Nature 416:576–578PubMedCrossRefGoogle Scholar
  132. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845PubMedCrossRefGoogle Scholar
  133. Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632PubMedCrossRefGoogle Scholar
  134. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720CrossRefGoogle Scholar
  135. Vance CP, Chiou T-J (eds) (2011) Focus issue on phosphorus plant physiology. Plant Physiol 156:987–1086Google Scholar
  136. van Wyk GF, Everard DA, Geldenhuys CJ (1995) Forest ecotone development and succession: experimental results and guidelines for forest rehabilitation and protection. Report FOR DEA 876. Division of Forest Science and Technology, CSIR, PretoriaGoogle Scholar
  137. von Braun J (2011) Das Welternährungsproblem heute und in der kommenden Generation. Akademie aktuell Bayer Akad Wiss 1:24–27Google Scholar
  138. von Caemmerer S, Evans PR (2010) Enhancing C3 photosynthesis. Plant Physiol 154:589–592CrossRefGoogle Scholar
  139. von Carlowitz HC (1713) Sylvicultura Oeconomica oder Haußwirthliche Nachricht und Naturmäßige Anweisung zur Wilden Baum-Zucht. J.F. Braun, LeipzigGoogle Scholar
  140. Walter H, Breckle SW (1984) Ökologie der Erde. 2. Spezielle Ökologie der tropischen und subtropischen Zonen. Gustav Fischer, StuttgartGoogle Scholar
  141. Weigel D, Jürgens G (2002) Stem cells that make stems. Nature 415:751–754PubMedCrossRefGoogle Scholar
  142. Weigel HJ, Bergmann E, Bender J (2014) Plant-mediated ecosystem effects of tropospheric ozone. Prog Bot 76:395–438CrossRefGoogle Scholar
  143. Weiner CN, Wemer M, Linsenmair KE, Blüthgen N (2011) Land use intensity in grasslands: changes in biodiversity, species composition and specialization in flower visitor networks. Basic Appl Ecol 12:292–299CrossRefGoogle Scholar
  144. West-Eberhard MJ (1986) Alternative adaptations, speciation, and phylogeny (a review). Proc Natl Acad Sci USA 83:1388–1392PubMedPubMedCentralCrossRefGoogle Scholar
  145. West-Eberhard MJ (1989) Phenotypic plasticity and origins of diversity. Annu Rev Ecol Syst 20:249–278CrossRefGoogle Scholar
  146. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, OxfordGoogle Scholar
  147. Westhoff P, Gowik U (2010) Evolution of C4 photosynthesis—looking for the master switch. Plant Physiol 154:598–601PubMedPubMedCentralCrossRefGoogle Scholar
  148. Williams K, Caldwell MM, Richards JH (1993) The influence of shade and clouds on water potential: the buffered behavior of hydraulic lift. Plant Soil 157:83–95CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of BiologyTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations