Roles of Memory and Circadian Clock in the Ecophysiological Performance of Plants

  • Ulrich LüttgeEmail author
  • Michel Thellier
Part of the Progress in Botany book series (BOTANY, volume 77)


Adaptation and acclimation of metabolism and development to environmental conditions at the site of rooting requires nonmobile plants to memorize information introduced by external signals. These act at various spatiotemporal levels of structure and function and ecophysiological performance. There are different types of memory, among which are priming memory, store/recall memory (STO/RCL), where both the storage and the recall function as well as their combination have ecophysiological significance, and epigenetic memory. Timing is important. Therefore, ultradian, circadian and annual rhythms are underlying memory functions, where the circadian clock may represent a prominent component. Memorization associated with adaptation and acclimation needs implementation of memory as backbone. A plethora of ecological impacts require memory, some of which will be exemplified and critically examined, namely, molecular aspects of membrane transport, fitness, photosynthesis, osmotic stress and salinity, pollution events and priming by volatile organic compounds and by vibrations. Memory is not an occasional episode but a fundamental property of general importance in the life of plants.


Photosynthetically Active Radiation Circadian Clock Calcium Wave Biological Clock Priming Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Professor Dr. Rainer Matyssek for carefully reading the manuscript and very many useful suggestions and stimulating comments.


  1. Adams KL (2010) Dandelions ‘remember’ stress: heritable stress-induced methylation patterns. New Phytol 185:867–868PubMedCrossRefGoogle Scholar
  2. Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Mol Plant Pathol 11:563–576PubMedCrossRefGoogle Scholar
  3. Amzallag GN (2002) The adaptive potential of plant development: evidence from the response to salinity. In: Läuchli A, Lüttge U (eds) Salinity: environment—plants—molecules. Kluver, Dordrecht, pp 291–312Google Scholar
  4. Amzallag GN (2005) Perturbed reproductive development in salt-treated Sorghum bicolor: a consequence of modifications in regulation networks? J Exp Bot 56:2821–2829PubMedCrossRefGoogle Scholar
  5. Amzallag GN, Seligmann H, Lerner HR (1993) A developmental window for salt-adaptation in Sorghum bicolor. J Exp Bot 44:645–652CrossRefGoogle Scholar
  6. Appel HM, Cocroft RB (2014) Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175:1257–1266PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baek D, Jiang J, Chung JS, Wang B, Chen J, Xin Z, Shi H (2011) Regulated AtHKT1 gene expression by a distal enhancer and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol 52:149–161PubMedCrossRefGoogle Scholar
  8. Bahnweg G, Heller W, Stich S, Knappe C, Betz G, Heerdt C, Kehr RD, Ernst D, Langebartels C, Nunn AJ, Rothenburger J, Schubert R, Müller-Starck G, Werner H, Matyssek R, Sandermann H Jr (2005) Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biol 7:659–669PubMedCrossRefGoogle Scholar
  9. Bailey C, Chen M (1983) Morphological basis of long-term habituation and sensitization in Aplysia. Science 220:91–93PubMedCrossRefGoogle Scholar
  10. Baluška F, Ninkovic V (2010) Plant communication from an ecological perspective. Springer, Berlin, p 252CrossRefGoogle Scholar
  11. Bilger W, Björkman O (1994) Relationships among violaxanthin deepoxidation, thylakoid membrane conformation, and non-photochemical chlorophyll fluorescence quenching in leaves of cotton (Gossypium hirsutum L.). Planta 193:238–246CrossRefGoogle Scholar
  12. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21PubMedCrossRefGoogle Scholar
  13. Bond DM, Finnegan EJ (2007) Passing the message on: inheritance of epigenetic traits. Trends Plant Sci 12:211–216PubMedCrossRefGoogle Scholar
  14. Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72PubMedCrossRefGoogle Scholar
  15. Bruce TJA (2010) Exploiting plant signals in sustainable agriculture. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 215–227CrossRefGoogle Scholar
  16. Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful ‘memories’ of plants: evidence and possible mechanisms. Plant Sci 173:603–608CrossRefGoogle Scholar
  17. Buchanan RB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society Plant Physiologists, Rockville, MD, 1367pGoogle Scholar
  18. Cervantes-Laurean D, Jacobson EL, Jacobson MK (1996) Glycation and glycoxidation of histones by ADP-ribose. J Biol Chem 271:10461–10469PubMedCrossRefGoogle Scholar
  19. Chen M, Lv S, Meng Y (2010) Epigenetic performers in plants. Dev Growth Differ 52:555–566PubMedCrossRefGoogle Scholar
  20. Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139PubMedPubMedCentralCrossRefGoogle Scholar
  21. Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395CrossRefGoogle Scholar
  22. Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531PubMedCrossRefGoogle Scholar
  23. Conrath U, Thulke O, Katz V, Schwindling S, Kohler A (2001) Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Pathol 107:113–119CrossRefGoogle Scholar
  24. Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13:1305–1315PubMedPubMedCentralCrossRefGoogle Scholar
  25. Critchley C, Russell AW (1994) Photoinhibition of photosynthesis in vivo: the role of protein turnover in photosystem II. Physiol Plant 92:188–196CrossRefGoogle Scholar
  26. Darrah C, Taylor BL, Edwards KD, Brown PE, Hall A, McWatters HG (2006) Analysis of phase of LUCIFERASE expression reveals novel circadian quantitative trait loci in Arabidopsis. Plant Physiol 140:1464–1474PubMedPubMedCentralCrossRefGoogle Scholar
  27. Davies E, Stankovic B, Vian A, Wood AJ (2012) Where has all the message gone? Plant Sci 185–186:23–32PubMedCrossRefGoogle Scholar
  28. Daxinger L, Whitelaw E (2010) Transgenerational epigenetic inheritance: more questions than answers. Genome Res 20:1623–1628PubMedPubMedCentralCrossRefGoogle Scholar
  29. Desbiez MO, Champagnat P, Boyer N, Frachisse JM, Gaspar T, Thellier M (1983) Inhibition correlative de la croissance de l’hypocotyle de Bidens pilosus L. par des traumatismes cotylédonaires légers. Bull Soc Bot Fr (Actual Bot) 130:67–77Google Scholar
  30. Desbiez MO, Champagnat P, Thellier M (1986) Mécanismes de mise en mémoire et de rappel de mémoire chez Bidens pilosus. CR Acad Sci Paris 302:573–578Google Scholar
  31. Desbiez MO, Gaspar T, Crouzillat D, Frachisse JM, Thellier M (1987) Effect of cotyledonary prickings on growth, ethylene metabolism and peroxidase activity in Bidens pilosus. Plant Physiol Biochem 25:137–143Google Scholar
  32. Desbiez MO, Tort M, Thellier M (1991) Control of a symmetry-breaking process in the course of the morphogenesis of plantlets of Bidens pilosa L. Planta 184:397–402PubMedCrossRefGoogle Scholar
  33. Desbiez MO, Mikulecky D, Thellier M (1994) Growth messages in plants: principle of a possible modeling and further experimental characteristics. J Biol Syst 2:127–136CrossRefGoogle Scholar
  34. Desbiez MO, Tort M, Monnier C, Thellier M (1998) Asymmetrical triggering of the cell cycle in opposite buds of a young plant, after a slight cotyledonary wound. CR Acad Sci Paris (Sciences de la Vie/Life Sciences) 321:403–407Google Scholar
  35. Devlin PF (2002) Signs of the time: environmental input to the circadian clock. J Exp Bot 53:1535–1550PubMedCrossRefGoogle Scholar
  36. Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant Cell Environ 32:654–665PubMedCrossRefGoogle Scholar
  37. Ding Y, Fromm M, Avramona Z (2012) Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat Commun 3:740PubMedCrossRefGoogle Scholar
  38. Dixon LE, Hodge SK, van Ooijen G, Troein C, Akman OE, Millar AJ (2014) Light and circadian regulation of clock components aids flexible responses to environmental signals. New Phytol 203:568–577PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival and competitive advantage. Science 309:630–633PubMedCrossRefGoogle Scholar
  40. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JJ (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858PubMedCrossRefGoogle Scholar
  41. Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55:51–86PubMedCrossRefGoogle Scholar
  42. Edmunds LN, Tamponnet C (1990) Oscillator control of cell division cycles in Euglena: role of calcium in circadian time-keeping. In: O’Day DH (ed) Calcium as an intracellular messenger in eucaryotic microbes. American Society for Microbiology, Washington, DC, pp 97–123Google Scholar
  43. Farré EM (2012) The regulation of plant growth by the circadian clock. Plant Biol 14:401–410PubMedCrossRefGoogle Scholar
  44. Forbes-Stovall J, Howton J, Young M, Davis G, Chandler T, Kessler B, Rinehart CA, Jacobshagen S (2014) Chlamydomonas reinhardtii strain CC-124 is highly sensitive to blue light in addition to green and red light in resetting its circadian clock, with the blue-light photoreceptor plant cryptochrome likely acting as negative modulator. Plant Cell Physiol 75:14–23Google Scholar
  45. Frankhauser C, Staiger D (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216:1–16CrossRefGoogle Scholar
  46. Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20:2960–2971PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gagliano M, Renton M, Depczynski M, Mancuso S (2014) Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia 175:63–72PubMedCrossRefGoogle Scholar
  48. Gális I, Gaquerel E, Pandey SP, Baldwin IT (2009) Molecular mechanisms underlying plant memory in JA-mediated defense responses. Plant Cell Environ 32:617–627PubMedCrossRefGoogle Scholar
  49. Gayler S (2010) Modélisation de l’effet de facteurs de l’environnement sur la répartition des ressources dans un système végétal mixte. CR Acad Agric France 96:89–90Google Scholar
  50. Gayler S, Grams TEE, Kozovits A, Luedemann G, Winkler JB, Priesack E (2006) Analysis of competition effects in mono- and mixed cultures of juvenile beech and spruce by means of the plant growth simulation model PLATHO. Plant Biol 8:503–514PubMedCrossRefGoogle Scholar
  51. Gayler S, Grams TEE, Heller W, Treutter D, Priesack E (2008) A dynamic model of environmental effects on allocation to carbon-based secondary compounds in juvenile trees. Ann Bot 101:1089–1098PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209CrossRefGoogle Scholar
  53. Gilmore AM, Govindjee (1999) How higher plants respond to excess light: energy dissipation in photosystem II. In: Singhal GS, Renger G, Sopory SK, Irrgang KD, Govindjee (eds) Concepts in photobiology: photosynthesis and photomorphogenesis. Narosa Publishing House, New Delhi, pp 513–548CrossRefGoogle Scholar
  54. Gilmore AM, Yamasaki H (1998) 9-Aminoacridine and dibucaine exhibit competitive interactions and complicated inhibitory effects that interfere with measurements of ΔpH and xanthophyll cycle-dependent photosystem II energy dissipation. Photosynth Res 57:159–174CrossRefGoogle Scholar
  55. Gilmore AM, Hazlett TL, Debrunner PG, Govindjee (1996) Comparative time-resolved photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle-dependent energy dissipation. Photochem Photobiol 64:552–563PubMedCrossRefGoogle Scholar
  56. Gilmore AM, Shinkarev VP, Hazlett TL, Govindjee (1998) Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids. Biochemistry 73:13582–13593CrossRefGoogle Scholar
  57. Gols R (2014) Direct and indirect chemical defenses against insects in a multitrophic framework. Plant Cell Environ 37:1741–1752PubMedCrossRefGoogle Scholar
  58. Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32PubMedCrossRefGoogle Scholar
  59. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352PubMedCrossRefGoogle Scholar
  60. Habte E, Müller LM, Shtaya M, Davis SJ, von Korff M (2014) Osmotic stress at the barley root affects expression of circadian clock genes in the shoot. Plant Cell Environ 37:1321–1337PubMedCrossRefGoogle Scholar
  61. Harmer SL, Kay SA (2005) Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17:1926–1940PubMedPubMedCentralCrossRefGoogle Scholar
  62. He J, Chow WS (2003) The rate coefficient of repair of photosystem II after photoinactivation. Physiol Plant 118:297–304CrossRefGoogle Scholar
  63. Heil M (2010) Within-plant signaling by volatiles triggers systemic defences. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 99–112CrossRefGoogle Scholar
  64. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335CrossRefGoogle Scholar
  65. Holt NE, Zigmantas D, Valkunas L, Li X-P, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436PubMedCrossRefGoogle Scholar
  66. Horton P, Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373PubMedCrossRefGoogle Scholar
  67. Horton P, Ruban AV, Walters RG (1994) Regulation of light harvesting in green plants. Indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiol 106:415–420PubMedPubMedCentralGoogle Scholar
  68. Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684PubMedCrossRefGoogle Scholar
  69. Hotta CT, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, Dodd AN, Webb AAR (2007) Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ 30:333–349PubMedCrossRefGoogle Scholar
  70. Hütt M-T, Lüttge U, Thellier M (2015) Noise-induced phenomena and complex rhythms: a test scenario for plant systems biology. In: Mancuso S, Shabala S (eds) Rhythms in plants, 2nd edn. Springer, Berlin, pp 279–321CrossRefGoogle Scholar
  71. Ibáñez C, Kozarewa I, Johansson M, Ögren E, Rohde A, Eriksson ME (2010) Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees. Plant Physiol 153:1823–1833PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jablonka E, Lamb MJ (1989) The inheritance of acquired epigenetic variation. J Theor Biol 139:69–83PubMedCrossRefGoogle Scholar
  73. Jennings RC, Islam K, Zucchelli G (1986) Spinach-thylakoid phosphorylation: studies on the kinetics of changes in photosystem antenna size, spill-over and phosphorylation of light-harvesting chlorophyll a/b protein. Biochim Biophys Acta [Bioenergetics] 850:483–489CrossRefGoogle Scholar
  74. Johnson CH (1992) Phase response curves: what can they tell us about circadian clocks? In: Hiroshige T, Honma K (eds) Circadian clocks from cell to human. Hokkaido University Press, Sapporo, Japan, pp 209–249Google Scholar
  75. Johnson CH, Golden SS (1999) Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol 53:389–409PubMedCrossRefGoogle Scholar
  76. Kakutani T (2002) Epi-alleles in plants: inheritance of epigenetic information over generations. Plant Cell Physiol 43:1106–1111PubMedCrossRefGoogle Scholar
  77. Kant P, Gordon M, Kant S, Zolla G, Davydov O, Heimer YM, Chalifa-Caspi V, Shaked R, Barak S (2008) Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. Plant Cell Environ 31:697–714PubMedCrossRefGoogle Scholar
  78. Karban R, Wetzel WC, Shiojiri K, Ishizaki S, Ramirez SR, Blande JD (2014) Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytol 204:380–385PubMedCrossRefGoogle Scholar
  79. Kathiria P, Sidler C, Golubov A, Kalischuk M, Kawchuk LM, Kovalchuk I (2010) Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol 153:1859–1870PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328PubMedCrossRefGoogle Scholar
  81. Kessler A, Baldwin IT (2004) Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in wild tobacco Nicotiana attenuata. Plant J 38:639–649PubMedCrossRefGoogle Scholar
  82. Kikis EA, Khanna R, Quail PH (2005) ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J 44:300–313PubMedCrossRefGoogle Scholar
  83. Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55:1859–1863PubMedCrossRefGoogle Scholar
  84. Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effect of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526PubMedCrossRefGoogle Scholar
  85. Knight MR, Smith SM, Trewavas AJ (1992) Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci USA 89:4967–4971PubMedPubMedCentralCrossRefGoogle Scholar
  86. Knight H, Brandt S, Knight MR (1998) A history of stress alters drought calcium signaling pathways in Arabidopsis. Plant J 16:681–687PubMedCrossRefGoogle Scholar
  87. Kou HP, Li Y, Song XX, Ou XF, Xing SC, Ma J, von Wettstein D, Liu B (2011) Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to stress in rice (Oryza sativa L.). J Plant Physiol 168:1685–1693PubMedCrossRefGoogle Scholar
  88. Langebartels C, Heller W, Führer G, Lippert M, Simons S, Sandermann H (1998) Memory effects in the action of ozone on conifers. Ecotoxicol Environ Saf 41:62–72PubMedCrossRefGoogle Scholar
  89. Lesburguères E, Gobbo OL, Alaux-Cantin S, Hambucken A, Trifilieff P, Bontempi B (2011) Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331:924–928PubMedCrossRefGoogle Scholar
  90. Li S, Liu J, Liu Z, Li X, Wu F, He Y (2014) HEAT-INDUCED TAS1 TARGETG1 mediates thermotolerance via HEAT STRESS TRANSCRIPTION FACTOR A1-directed pathways in Arabidopsis. Plant Cell 26:1764–1780PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lo WS, Duggan L, Emre NCT, Belotserkovskya R, Lane WS, Shiekhattar R, Berger SL (2001) Snf1—a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293:1142–1146PubMedCrossRefGoogle Scholar
  92. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. W. H. Freeman, New York, NY, Section 21-7: Learning and memoryGoogle Scholar
  93. Loreto F, Dicke M, Schnitzler J-P, Turlings TCJ (2014) Plant volatiles and the environment. Plant Cell Environ 37:1905–1908PubMedCrossRefGoogle Scholar
  94. Love J, Dodd AN, Webb AAR (2004) Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell 16:956–966PubMedPubMedCentralCrossRefGoogle Scholar
  95. Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7:640–649PubMedCrossRefGoogle Scholar
  96. Luedemann G, Matyssek R, Winkler JB, Grams TEE (2009) Contrasting ozone × pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies). Plant Soil 323:47–60CrossRefGoogle Scholar
  97. Lüttge U (2003) Circadian rhythmicity: is the “biological clock” hardware or software. Progr Bot 64:277–319CrossRefGoogle Scholar
  98. Lüttge U (2008) Physiological ecology of tropical plants, 2nd edn. Springer, Berlin, 458pGoogle Scholar
  99. Lüttge U, Hertel B (2009) Diurnal and annual rhythms in trees. Trees 23:683–700CrossRefGoogle Scholar
  100. Lüttge U, Kluge M, Thiel G (2010) Botanik. Die umfassende Biologie der Pflanzen. Wiley-VCH, Weinheim, 1215pGoogle Scholar
  101. Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404CrossRefGoogle Scholar
  102. Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582PubMedCrossRefGoogle Scholar
  103. Matyssek R, Koricheva J, Schnyder H, Ernst D, Munch JC, Osswald W, Pretzsch H (2012) The balance between resource sequestration and retention: a challenge in plant science. In: Matyssek R, Schnyder H, Osswald W, Ernst D, Munch JC, Pretzsch H (eds) Growth and defence in plants—resource allocation at multiple scales, Ecological studies 220. Springer, Heidelberg, pp 3–24CrossRefGoogle Scholar
  104. Matzke M, Matzke AJ, Pruss GJ, Vance VB (2001) RNA-based silencing strategies in plants. Curr Opin Genet Dev 11:221–227PubMedCrossRefGoogle Scholar
  105. Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA directed DNA methylation. Curr Opin Plant Biol 10:512–519PubMedCrossRefGoogle Scholar
  106. McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+ signalling systems. Trends Plant Sci 3:32–36CrossRefGoogle Scholar
  107. McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803PubMedPubMedCentralCrossRefGoogle Scholar
  108. McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signaling to the circadian clock. Nature 408:716–720PubMedCrossRefGoogle Scholar
  109. Michael TP, McClung CR (2002) Phase-specific circadian clock regulatory elements in Arabidopsis. Plant Physiol 130:627–638PubMedPubMedCentralCrossRefGoogle Scholar
  110. Millar AJ (1999) Biological clocks in Arabidopsis thaliana. New Phytol 141:175–197CrossRefGoogle Scholar
  111. Millar AJ, Kay SA (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA 93:15491–15496PubMedPubMedCentralCrossRefGoogle Scholar
  112. Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049PubMedCrossRefGoogle Scholar
  113. Müller LM, von Korff M, Davis SJ (2014) Connections between circadian clocks and carbon metabolism reveal species-specific effects on growth control. J Exp Bot 65:2915–2923PubMedCrossRefGoogle Scholar
  114. Nakamichi N (2011) Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52:1709–1718PubMedPubMedCentralCrossRefGoogle Scholar
  115. Niwa Y, Yamashino T, Mizuno T (2009) The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol 50:838–854PubMedCrossRefGoogle Scholar
  116. Ogudi T, Sage-Ono K, Kamada H, Ono M (2004) Characterization of transcriptional oscillation of an Arabidopsis homolog of PnC401 related to photoperiodic induction of flowering in Pharbitis nil. Plant Cell Physiol 45:232–235CrossRefGoogle Scholar
  117. Olbrich M, Knappe C, Wenig M, Gerstner E, Häberle K-H, Kitao M, Matyssek R, Stich S, Leuchner M, Werner H, Schlink K, Müller-Starck G, Welzl G, Scherb H, Ernst D, Heller W, Bahnweg G (2010) Ozone Fumigation (twice ambient) reduces leaf infestation following natural and artificial inoculation by the endophytic fungus Apiognomonia errabunda of adult European beech trees. Environ Pollut 158:1043–1050PubMedCrossRefGoogle Scholar
  118. Onai K, Okamoto K, Nishimoto H, Morioka C, Hirano M, Kami-Ike N, Ishiura M (2004) Large-scale screening of Arabidopsis circadian clock mutants by a high-throughput real-time bioluminescence monitoring system. Plant J 40:1–11PubMedCrossRefGoogle Scholar
  119. Osmond CB, Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot 46:1351–1362CrossRefGoogle Scholar
  120. Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Nat Acad Sc USA 95:8660–8664CrossRefGoogle Scholar
  121. Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56CrossRefGoogle Scholar
  122. Pearcy RW, Osteryoung K, Calkin HW (1985) Photosynthetic responses to dynamic light environments by Hawaiian trees. Plant Physiol 79:896–902PubMedPubMedCentralCrossRefGoogle Scholar
  123. Pierik R, Ballaré CL, Dicke M (2014) Ecology of plant volatiles: taking a plant community perspective. Plant Cell Environ 37:1845–1853PubMedCrossRefGoogle Scholar
  124. Plieth C, Hansen UP, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18:491–497PubMedCrossRefGoogle Scholar
  125. Portis AR (2003) Rubisco activase—Rubisco’s catalytic chaperone. Photosyn Res 75:11–27PubMedCrossRefGoogle Scholar
  126. Rasmann S, de Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863PubMedPubMedCentralCrossRefGoogle Scholar
  127. Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 76:395–401CrossRefGoogle Scholar
  128. Rikin A (1991) Temperature-induced phase shifting of circadian rhythms in cotton seedlings as related to variations in chilling resistance. Planta 185:407–414PubMedCrossRefGoogle Scholar
  129. Ripoll C, Le Sceller L, Verdus M-C, Norris V, Tafforeau M, Thellier M (2009) Memorization of abiotic stimuli in plants: a complex role for calcium. In: Baluska F (ed) Plant-environment interactions. Springer, Berlin, pp 267–283CrossRefGoogle Scholar
  130. Roden LC, Song H-R, Jackson S, Morris K, Carré IA (2002) Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc Natl Acad Sci USA 99:13313–13318PubMedPubMedCentralCrossRefGoogle Scholar
  131. Roux D, Vian A, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G (2006) Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiol Plant 128:283–288CrossRefGoogle Scholar
  132. Salomé PA, Michael TP, Kearns EV, Fett-Neto AG, Sharrock RA, McClung CR (2002) The out of phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis. Plant Physiol 129:1674–1685PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sasek TW, Richardson CJ, Fendick EA, Bevington SR, Kress LW (1991) Carryover effects of acid rain and ozone on the physiology of multiple flushes of loblolly pine seedlings. For Sci 37:1078–1098Google Scholar
  134. Sassenrath-Cole GF, Pearcy RW (1992) The role of ribulose-bisphosphate regeneration in the induction requirement of photosynthetic CO2 exchange under transient light conditions. Plant Physiol 99:227–234PubMedPubMedCentralCrossRefGoogle Scholar
  135. Saze H (2008) Epigenetic memory transmission through mitosis and meiosis in plants. Semin Cell Dev Biol 19:527–536PubMedCrossRefGoogle Scholar
  136. Shen J, Xie K, Xiong L (2010) Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Gen Genet 284:477–488CrossRefGoogle Scholar
  137. Sinclair J, Hanks P, Fox G, Moon R, Stock P (1987) Collins Cobuild English dictionary. Collins, London, 1703pGoogle Scholar
  138. Sridhar VV, Kapoor A, Zhang K, Zhu J, Zhou T, Hasegawa PM, Bressan RA, Zhu JK (2007) Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447:735–738PubMedCrossRefGoogle Scholar
  139. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  140. Tafforeau M, Verdus M-C, Norris V, White G, Demarty M, Thellier M, Ripoll C (2002) SIMS study of the calcium-deprivation step related to epidermal meristem production induced in flax by cold shock or radiation from a GSM telephone. J Trace Microprobe Techn 20:611–623CrossRefGoogle Scholar
  141. Tafforeau M, Verdus MC, Norris V, White GJ, Cole M, Demarty M, Thellier M, Ripoll C (2004) Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics 25:403–407PubMedCrossRefGoogle Scholar
  142. Tafforeau M, Verdus M-C, Norris V, Ripoll C, Thellier M (2006) Memory processes in the response of plants to environmental signals. Plant Signal Behav 1:9–14PubMedPubMedCentralCrossRefGoogle Scholar
  143. Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M (1984) ADP-ribosyltransferase from hen liver nuclei. Purification and characterization. J Biol Chem 259:2022–2029PubMedGoogle Scholar
  144. Tanner W (1969) Light-driven active uptake of 3-O-methylglucose via an inducible hexose uptake system of Chlorella. Biochem Biophys Res Comm 36:278–283PubMedCrossRefGoogle Scholar
  145. Tanner W, Grünes R, Kandler O (1970) Spezifität und Turnover des induzierbaren Hexose-Aufnahmesystems von Chlorella. Z Pflanzenphysiol 62:376–386Google Scholar
  146. Thellier M (2015) Les plantes ont-elles de la mémoire? Editions Quae, Versailles, 111pGoogle Scholar
  147. Thellier M, Lüttge U (2013) Plant memory: a tentative model. Plant Biol 15:1–12PubMedCrossRefGoogle Scholar
  148. Thellier M, Desbiez MO, Champagnat P, Kergosien Y (1982) Do memory processes also occur in plants? Physiol Plant 56:281–284CrossRefGoogle Scholar
  149. Thellier M, Le Sceller L, Norris V, Verdus M-C, Ripoll C (2000) Long-distance transport, storage and recall of morphogenetic information in plants: the existence of a primitive plant “memory”. CR Acad Sci Paris (Sciences de la Vie/Life Science) 323:81–91Google Scholar
  150. Thellier M, Ripoll C, Norris V (2013) Memory processes in the control of plant growth and metabolism. Nova Acta Leopoldina NF 114(391):21–42Google Scholar
  151. Trewavas A (1999) Le calcium c’est la vie: calcium waves. Plant Physiol 120:1–6PubMedPubMedCentralCrossRefGoogle Scholar
  152. Trewavas A (2003) Aspects of plant intelligence. Ann Bot 92:1–20PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tyystjärvi E, Aro E-M (1996) The rate constant of photoinhibition measured in lincomycin-treated leaves is directly proportional to light intensity. Proc Natl Acad Sci USA 93:2213–2218PubMedPubMedCentralCrossRefGoogle Scholar
  154. Ueda M, Nakamura Y (2006) Metabolites involved in plant movement and “memory”: nyctinasty of legumes and trap movement in the Venus flytrap. Nat Prod Rep 23:548–557PubMedCrossRefGoogle Scholar
  155. Valladares F, Allen MT, Pearcy RW (1997) Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs along a light gradient. Oecologia 111:505–514CrossRefGoogle Scholar
  156. van Hulten M, Ton J, Pieterse CMJ, van Wees SCM (2010) Plant defense signaling from the underground primes aboveground defenses to confer enhanced resistance in a cost-efficient manner. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 43–60CrossRefGoogle Scholar
  157. Verdus M-C, Thellier M, Ripoll C (1997) Storage of environmental signals in flax: their morphogenetic effect as enabled by a transient depletion of calcium. Plant J 12:1399–1410CrossRefGoogle Scholar
  158. Verdus M-C, Le Sceller L, Norris V, Thellier M, Ripoll C (2007) Pharmacological evidence for calcium involvement in the long-term processing of abiotic stimuli in plants. Plant Signal Behav 2:212–220PubMedPubMedCentralCrossRefGoogle Scholar
  159. Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118PubMedCrossRefGoogle Scholar
  160. Vian A, Roux D, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G (2006) Microwave irradiation affects gene expression in plants. Plant Signal Behav 1:67–70PubMedPubMedCentralCrossRefGoogle Scholar
  161. Voelckel C, Baldwin IT (2004) Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant J 38:650–663PubMedCrossRefGoogle Scholar
  162. Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2010) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960PubMedPubMedCentralCrossRefGoogle Scholar
  163. Wenden B, Kozma-Bognár L, Edwards KD, Hall AJW, Locke JCW, Millar AJ (2011) Light inputs shape the Arabidopsis circadian system. Plant J 66:480–491PubMedCrossRefGoogle Scholar
  164. Wilhelm C, Wirth C (2015) Physiodiversity—New tools allow physiologist to embrace biodiversity and reconstruct the evolution of ‘physiologies’? J Plant Physiol 172:1–3PubMedCrossRefGoogle Scholar
  165. Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481–1486PubMedCrossRefGoogle Scholar
  166. Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62:3727–3735PubMedCrossRefGoogle Scholar
  167. Yerushalmi S, Green RM (2009) Evidence for the adaptive significance of circadian rhythms. Ecol Lett 12:970–981PubMedCrossRefGoogle Scholar
  168. Yerushalmi S, Yakir E, Green RM (2011) Circadian clocks and adaptation in Arabidopsis. Mol Ecol 20:1155–1165PubMedCrossRefGoogle Scholar
  169. Zhang X (2008) The epigenetic landscape of plants. Science 320:489–492PubMedCrossRefGoogle Scholar
  170. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360PubMedCrossRefGoogle Scholar
  171. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201PubMedCrossRefGoogle Scholar
  172. zu Castell W, Fleischmann F, Heger T, Matyssek R (2016) Shaping theoretic foundations of holobiont-like systems. In: Cánovas FM, Lüttge U, Matyssek R (eds) Progress in botany, vol 77. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of BiologyTechnical University of DarmstadtDarmstadtGermany
  2. 2.Emeritus of the University of RouenNantesFrance

Personalised recommendations