Skip to main content

Diversity and Evolution of Sexual Strategies in Silene: A Review

  • Chapter
  • First Online:
Progress in Botany 77

Part of the book series: Progress in Botany ((BOTANY,volume 77))

  • 1001 Accesses

Abstract

The variety and evolution of reproductive strategies in plants have attracted the attention of scientists for a long time. The genus Silene has been the focus of several studies related to the diversity and evolution of sexual systems. This review will summarize the huge amount of knowledge on sexual strategies in Silene species. Hermaphroditism is the most frequent condition in Silene; however, there is a relatively high frequency of gynodioecy and dioecy compared to angiosperms and dicotyledons. In some gynodioecious species, gynomonoecious individuals are common, forming a gynodioecious-gynomonoecious sexual system that is rare among angiosperms. Dioecy has independently evolved in the two phylogenetically supported subgenera of Silene, with a probable origin down the “gynodioecious pathway.” Heterogametic sex chromosomes have made S. latifolia and other dioecious species of the genus important models for the evolution of sex determination. In Silene species, studies on sexual expression at the plant and population level suggest that it is highly variable. Sexual dimorphism in reproductive and vegetative characters of dioecious species showed patterns that generally fit those found in other species. Compared with other genera of angiosperms, Silene presents a unique opportunity to evaluate the evolution of the different sexual systems and sex chromosomes (being of the few angiosperm genera with female heterogamety), the maintenance of gynodioecious and gynodioecious-gynomonoecious sexual systems, and the evolutionary implications of sexual dimorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ågren J, Danell K, Elmqvist T, Ericson L, Hjältén J (1999) Sexual dimorphism and biotic interactions. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 217–246

    Chapter  Google Scholar 

  • Alatalo JM, Molau U (2001) Pollen viability and limitation of seed production in a population of the circumpolar cushion plant, Silene acaulis (Caryophyllaceae). Nord J Bot 21:365–372

    Article  Google Scholar 

  • Alexander HM (1989) An experimental field study of anther-smut disease of Silene alba caused by Ustilago violacea: genotypic variation and disease incidence. Evolution 43:835–847

    Article  Google Scholar 

  • Antonovics J, Hood M, Partain J (2002) The ecology and genetics of a host shift: microbotryum as a model system. Am Nat 160:S40–S53

    Article  PubMed  Google Scholar 

  • Ashman TL (2009) Sniffing out patterns of sexual dimorphism in floral scent. Funct Ecol 23:852–862

    Article  Google Scholar 

  • Austen EJ, Weis AE (2014) Temporal variation in phenotypic gender and expected functional gender within and among individuals in an annual plant. Ann Bot 114:167–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Austerlitz F, Gleiser G, Teixeira S, Bernasconi G (2012) The effects of inbreeding, genetic dissimilarity and phenotype on male reproductive success in a dioecious plant. Proc R Soc B 279:91–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey MF, Delph LF (2007a) A field guide to models of sex-ratio evolution in gynodioecious species. Oikos 116:1609–1617

    Article  Google Scholar 

  • Bailey MF, Delph LF (2007b) Sex-ratio evolution in nuclear-cytoplasmic gynodioecy when restoration is a threshold trait. Genetics 176:2465–2476

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey MF, McCauley DE (2005) Offspring sex ratio under inbreeding and outbreeding in a gynodioecious plant. Evolution 59:287–295

    Article  PubMed  Google Scholar 

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284

    Article  CAS  PubMed  Google Scholar 

  • Barrett SCH (2013) The evolution of plant reproductive systems: how often are transitions irreversible? Proc R Soc B 280:20130913

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett SCH, Harder LD (2006) David G. Lloyd and the evolution of floral biology: from natural history to strategic analysis. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, New York, NY, pp 1–21

    Google Scholar 

  • Barrett SCH, Hough J (2013) Sexual dimorphism in flowering plants. J Exp Bot 64:67–82

    Article  CAS  PubMed  Google Scholar 

  • Barrett SCH, Yakimowski SB, Field DL, Pickup M (2010) Ecological genetics of sex ratios in plant populations. Philos Trans R Soc Lond B Biol Sci 365:2549–2557

    Article  PubMed  PubMed Central  Google Scholar 

  • Bateman AJ (1948) Intrasexual selection in Drosophila. Heredity 2:349–368

    Article  CAS  PubMed  Google Scholar 

  • Bawa KS (1980) Evolution of dioecy in flowering plants. Annu Rev Ecol Syst 11:15–39

    Article  Google Scholar 

  • Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102

    Article  PubMed  Google Scholar 

  • Bernasconi G, Antonovics J, Biere A, Charlesworth D, Delph LF, Filatov D, Giraud T, Hood ME, Marais GAB, McCauley D, Pannell JR, Shykoff JA, Vyskot B, Wolfe LM, Widmer A (2009) Silene as a model system in ecology and evolution. Heredity 103:5–14

    Article  CAS  PubMed  Google Scholar 

  • Bertin RI, Newman CN (1993) Dichogamy in angiosperms. Bot Rev 59:112–150

    Article  Google Scholar 

  • Brunet J, Charlesworth D (1995) Floral sex allocation in sequentially blooming plants. Evolution 49:70–79

    Article  Google Scholar 

  • Carlsson-Granér U, Elmqvist T, Ågren J, Gardfjell H, Ingvarsson P (1998) Floral sex ratios, disease and seed set in dioecious Silene dioica. J Ecol 86:79–91

    Article  Google Scholar 

  • Carroll SB, Delph LF (1996) The effects of gender and plant architecture on allocation to flowers in dioecious Silene latifolia (Caryophyllaceae). Int J Plant Sci 157:493–500

    Article  Google Scholar 

  • Carroll SB, Mulcahy DL (1993) Progeny sex ratios in dioecious Silene latifolia (Caryophyllaceae). Am J Bot 80:551–556

    Article  Google Scholar 

  • Casimiro-Soriguer I (2015) Sistemas sexuales y polimorfismo de color en Silene: una aproximación en la sección Psammophilae. Ph.D. dissertation, Pablo de Olavide University, Seville

    Google Scholar 

  • Casimiro-Soriguer I, Buide ML, Narbona E (2013) The roles of female and hermaphroditic flowers in the gynodioecious-gynomonoecious Silene littorea: insights into the phenology of sex expression. Plant Biol 15:941–947

    Article  CAS  PubMed  Google Scholar 

  • Casimiro-Soriguer I, Buide ML, Narbona E (2015) Diversity of sexual systems within different lineages of the genus Silene. AoB Plants 7:plv037

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlesworth D (1999) Theories of the evolution of dioecy. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 33–60

    Chapter  Google Scholar 

  • Charlesworth D (2013) Plant sex chromosome evolution. J Exp Bot 64:405–420

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  • Charlesworth D, Laporte V (1998) The male-sterility polymorphism of Silene vulgaris: analysis of genetic data from two populations and comparison with Thymus vulgaris. Genetics 150:1267–1282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox PA (1981) Niche partitioning between sexes of dioecious plants. Am Nat 117:295–307

    Article  Google Scholar 

  • Crossman A, Charlesworth D (2014) Breakdown of dioecy: models where males acquire cosexual functions. Evolution 68:426–440

    Article  PubMed  Google Scholar 

  • Cruden RW, Hermann-Parker SM (1977) Temporal dioecism: an alternative to dioecism. Evolution 31:863–866

    Article  Google Scholar 

  • Cruden RW, Lloyd RM (1995) Embryophytes have equivalent sexual phenotypes and breeding systems: why not a common terminology to describe them? Am J Bot 82:816–825

    Article  Google Scholar 

  • Darwin C (1877) The different forms of flowers on plants of the same species. John Murray, London

    Book  Google Scholar 

  • Davis SL, Delph LF (2005) Prior selfing and gynomonoecy in Silene noctiflora L. (Caryophyllaceae): opportunities for enhanced outcrossing and reproductive assurance. Int J Plant Sci 166:475–480

    Article  Google Scholar 

  • De Jong TJ, Shmida A, Thuijsman F (2008) Sex allocation in plants and the evolution of monoecy. Evol Ecol Res 10:1087–1109

    Google Scholar 

  • Delph LF (1999) Sexual dimorphism in life history. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 149–173

    Chapter  Google Scholar 

  • Delph LF (2003) Sexual dimorphism in gender plasticity and its consequences for breeding system evolution. Evol Dev 5:34–39

    Article  PubMed  Google Scholar 

  • Delph LF, Carroll SB (2001) Factors affecting relative seed fitness and female frequency in a gynodioecious species, Silene acaulis. Evol Ecol Res 3:487–505

    Google Scholar 

  • Delph LF, Herlihy CR (2012) Sexual, fecundity, and viability selection on flower size and number in a sexually dimorphic plant. Evolution 66:1154–1166

    Article  PubMed  Google Scholar 

  • Delph LF, Meagher TR (1995) Sexual dimorphism masks life history trade-offs in the dioecious plant Silene latifolia. Ecology 76:775–785

    Article  Google Scholar 

  • Delph LF, Wolf DE (2005) Evolutionary consequences of gender plasticity in genetically dimorphic breeding systems. New Phytol 166:119–128

    Article  PubMed  Google Scholar 

  • Delph LF, Knapczyk FN, Taylor DR (2002) Among-population variation and correlations in sexually dimorphic traits of Silene latifolia. J Evol Biol 15:1011–1020

    Article  Google Scholar 

  • Delph LF, Gehring JL, Frey FM, Arntz M, Levri M (2004) Genetic constraints on floral evolution in a sexually dimorphic plant revealed by artificial selection. Evolution 58:1936–1946

    Article  PubMed  Google Scholar 

  • Delph LF, Gehring JL, Arntz AM, Levri M, Frey FM (2005) Genetic correlations with floral display lead to sexual dimorphism in the cost of reproduction. Am Nat 166:S31–S41

    Article  PubMed  Google Scholar 

  • Desfeux C, Maurice S, Henry JP, Lejeune B, Gouyon PH (1996) Evolution of reproductive systems in the genus Silene. Proc R Soc Lond 263:409–414

    Article  CAS  Google Scholar 

  • Devlin B, Stephenson AG (1987) Sexual variations among plants of a perfect-flowered species. Am Nat 130:199–218

    Article  Google Scholar 

  • Dufay M, Billard E (2012) How much better are females? The occurrence of female advantage, its proximal causes and its variation within and among gynodioecious species. Ann Bot 109:505–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Dufay M, Lahiani E, Brachi B (2010) Gender variation and inbreeding depression in gynodioecious-gynomonoecious Silene nutans (Caryophyllaceae). Int J Plant Sci 171:53–62

    Article  Google Scholar 

  • Dufay M, Champelovier P, Käfer J, Henry JP, Mousset S, Marais GAB (2014) An angiosperm-wide analysis of the gynodioecy-dioecy pathway. Ann Bot 114:539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dykstra AB, Brock MT, Delph LF, Weinig C (2009) Sex-specific trade-offs and responses to foliar shade in the gynodioecious species Silene vulgaris (Caryophyllaceae). Int J Plant Sci 170:575–583

    Article  Google Scholar 

  • Eckhart VM (1999) Sexual dimorphism in flowers and inflorescences. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 123–148

    Chapter  Google Scholar 

  • Ehlers BK, Thompson JD (2004) Temporal variation in sex allocation in hermaphrodites of gynodioecious Thymus vulgaris L. J Ecol 92:15–23

    Article  Google Scholar 

  • Elle E, Meagher TR (2000) Sex allocation and reproductive success in the andromonoecious perennial Solanum carolinense (Solanaceae). II. Paternity and functional gender. Am Nat 156:622–636

    Article  Google Scholar 

  • Erixon P, Oxelman B (2008) Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS One 1:e1386

    Article  CAS  Google Scholar 

  • Filatov DA (2005) Evolutionary history of Silene latifolia sex chromosomes revealed by genetic mapping of four genes. Genetics 170:975–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming TH, Maurice S, Buchmann SL, Tuttle MD (1994) Reproductive biology and relative male and female fitness in a trioecious cactus, Pachycereus pringlei (Cactaceae). Am J Bot 81:858–867

    Article  Google Scholar 

  • Folke SH, Delph LF (1997) Environmental and physiological effects on pistillate flower production in Silene noctiflora L. (Caryophyllaceae). Int J Plant Sci 158:501–509

    Article  Google Scholar 

  • Garraud C, Brachi B, Dufay M, Touzet P, Shykoff JA (2011) Genetic determination of male sterility in gynodioecious Silene nutans. Heredity 106:757–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring JL, Linhart YB (1993) Sexual dimorphism and response to low resources in the dioecious plant Silene latifolia (Caryophyllaceae). Int J Plant Sci 154:152–162

    Article  Google Scholar 

  • Gehring JL, Scoby J, Parsons M, Delph LF (2004) Whole-plant investment in nectar is greater for males than pollinated females in the dioecious plant Silene latifolia. Evol Ecol Res 6:1237–1252

    Google Scholar 

  • Gleiser G, Verdú M, Segarra-Moragues JG, González-Martínez SC, Pannell JR (2008) Disassortative mating, sexual specialization, and the evolution of gender dimorphism in heterodichogamous Acer opalus. Evolution 62:1676–1688

    Article  PubMed  Google Scholar 

  • Golenberg EM, West NW (2013) Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. Am J Bot 100:1022–1037

    Article  CAS  PubMed  Google Scholar 

  • Guitián P, Medrano M (2000) Sex expression and fruit set in Silene littorea (Caryophyllaceae): variation among populations. Nord J Bot 20:467–473

    Article  Google Scholar 

  • Harder LD, Barrett SCH (2006) Ecology and evolution of flowers. Oxford University Press, Oxford, UK

    Google Scholar 

  • Hood ME, Mena-Alí JI, Gibson AK, Oxelman B, Giraud T, Yockteng R, Arroyo MTK, Conti F, Pedersen AB, Gladieux P, Antonovics J (2010) Distribution of the anther-smut pathogen Microbotryum on species of the Caryophyllaceae. New Phytol 187:217–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Jolls CL, Chenier TC, Hatley CL (1994) Spectrophotometric analysis of nectar production in Silene vulgaris (Caryophyllaceae). Am J Bot 81:60–64

    Article  Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (1996) Reproduction and pollination in Central European populations of Silene and Saponaria species. Bot Acta 109:316–324

    Article  Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (2002) Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination, life form, style number, and sexual system. Sex Plant Reprod 14:279–289

    Article  Google Scholar 

  • Käfer J, Talianová M, Bigot T, Michu E, Guéguen L, Widmer A, Žlůvová J, Glémin S (2013) Patterns of molecular evolution in dioecious and non-dioecious Silene. J Evol Biol 26:335–346

    Article  PubMed  Google Scholar 

  • Kaltz O, Shykoff JA (2001) Male and female Silene latifolia plants differ in per-contact risk of infection by a sexually transmitted disease. J Ecol 89:99–109

    Article  Google Scholar 

  • Kay QON, Lack AJ, Bamber FC, Davies CR (1984) Differences between sexes in floral morphology, nectar production and insect visits in a dioecious species, Silene dioica. New Phytol 98:515–529

    Article  Google Scholar 

  • Kephart S, Reynolds RJ, Rutter MT, Fenster CB, Dudash MR (2006) Pollination and seed predation by moths on Silene and allied Caryophyllaceae: evaluating a model system to study the evolution of mutualisms. New Phytol 169:667–680

    Article  PubMed  Google Scholar 

  • Knuth P (1908) Handbook of flower pollination, vol II (English translation by JR Ainsworth Davis). Clarendon Press, Oxford, UK

    Google Scholar 

  • Koelewijn HP, Van Damme JMM (1996) Gender variation, partial male sterility and labile sex expression in gynodioecious Plantago coronopus. New Phytol 132:67–76

    Article  Google Scholar 

  • Lafuma L, Maurice S (2006) Reproductive characters in a gynodioecious species, Silene italica (Caryophyllaceae), with attention to the gynomonoecious phenotype. Biol J Linn Soc 87:583–591

    Article  Google Scholar 

  • Laporte MM, Delph LF (1996) Sex-specific physiology and source-sink relations in the dioecious plant Silene latifolia. Oecologia 106:63–72

    Article  Google Scholar 

  • Lloyd DG (1976) The transmission of genes via pollen and ovules in gynodioecious angiosperms. Theor Popul Biol 9:299–316

    Article  CAS  PubMed  Google Scholar 

  • Lloyd DG (1979) Parental strategies in angiosperms. N Z J Bot 17:595–606

    Article  Google Scholar 

  • Lloyd DG (1980) Sexual strategies in plants. III. A quantitative method for describing the gender of plants. N Z J Bot 18:103–108

    Article  Google Scholar 

  • Lloyd DG, Bawa KS (1984) Modification of the gender of seed plants in varying conditions. Evol Biol 17:255–338

    Article  Google Scholar 

  • Lovett Doust J, O’Brien G, Lovett Doust L (1987) Effect of density on secondary sex characteristics and sex ratio in Silene alba (Caryophyllaceae). Am J Bot 74:40–46

    Article  Google Scholar 

  • Mabberley DJ (2008) Mabberley’s plant-book. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Marais GAB, Forrest A, Kamau E, Käfer J, Daubin V, Charlesworth D (2011) Multiple nuclear gene phylogenetic analysis of the evolution of dioecy and sex chromosomes in the genus Silene. PLoS One 6:e21915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga S, Isono E, Kejnovsky E, Vyskot B, Dolezel J, Kawano S, Charlesworth D (2003) Duplicative transfer of a MADS box gene to a plant Y chromosome. Mol Biol Evol 20:1062–1069

    Article  CAS  PubMed  Google Scholar 

  • Maurice S (1999) Gynomonoecy in Silene italica (Caryophyllaceae): sexual phenotypes in natural populations. Plant Biol 1:346–350

    Article  Google Scholar 

  • Maurice S, Charlesworth D, Desfeux C, Couvet D, Gouyon PH (1993) The evolution of gender in hermaphrodites of gynodioecious populations with nucleo-cytoplasmic male-sterility. Proc R Soc Lond B 251:253–261

    Article  Google Scholar 

  • Maurice S, Desfeux C, Mignot A, Henry JP (1999) Is Silene acaulis (Caryophyllaceae) a trioecious species? Reproductive biology of two subspecies. Can J Bot 76:478–485

    Google Scholar 

  • Meagher TR (1992) The quantitative genetics of sexual dimorphism in Silene latifolia (Caryophyllaceae). I Genetic variation. Evolution 46:445–457

    Article  Google Scholar 

  • Meagher TR (1999) The quantitative genetics of sexual dimorphism. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 275–294

    Chapter  Google Scholar 

  • Meagher TR, Costich DE (1994) Sexual dimorphism in nuclear DNA content and floral morphology in populations of Silene. Am J Bot 81:1198–1204

    Article  Google Scholar 

  • Meagher TR, Costich DE (2004) ‘Junk’ DNA and long-term phenotypic evolution in Silene section Elisanthe (Caryophyllaceae). Proc R Soc Lond B 271:S493–S497

    Article  Google Scholar 

  • Meagher TR, Vassiliadis C (2005) Phenotypic impacts of repetitive DNA in flowering plants. New Phytol 168:71–80

    Article  CAS  PubMed  Google Scholar 

  • Meagher TR, Gillies ACM, Costich DE (2005) Genome size, quantitative genetics and the genomic basis for flower size evolution in Silene latifolia. Ann Bot 95:247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Méndez M (1998) Modification of phenotypic and functional gender in the monoecious Arum italicum (Araceae). Am J Bot 85:225–234

    Article  PubMed  Google Scholar 

  • Ming R, Moore PH (2007) Genomics of sex chromosomes. Curr Opin Plant Biol 10:123–130

    Article  CAS  PubMed  Google Scholar 

  • Mrackova M, Nicolas M, Hobza R, Negrutiu I, Monéger F, Widmer A, Vyskot B, Janousek B (2008) Independent origin of sex chromosomes in two species of the genus Silene. Genetics 179:1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muenchow GE, Grebus M (1989) The evolution of dioecy from distyly: reevaluation of the hypothesis of the loss of long-tongued pollinators. Am Nat 133:149–156

    Article  Google Scholar 

  • Müller H (1883) The fertilization of flowers. Macmillan, London, UK

    Google Scholar 

  • Narbona E, Ortiz PL, Arista M (2005) Dichogamy and sexual dimorphism in floral traits in the andromonoecious Euphorbia boetica. Ann Bot 95:779–787

    Article  PubMed  PubMed Central  Google Scholar 

  • Narbona E, Ortiz PL, Arista M (2011) Linking self-incompatibility, dichogamy and flowering synchrony in two Euphorbia species: alternative mechanisms for avoiding self-fertilization? PLoS One 6:e20668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neal PR, Anderson GJ (2005) Are ‘mating systems’ ‘breeding systems’ of inconsistent and confusing terminology in plant reproductive biology? or is it the other way around? Plant Syst Evol 250:173–185

    Article  Google Scholar 

  • Oxelman B, Lidén M, Turland NJ (2001) Taxonomic and nomenclatural notes on Chinese Silene (Caryophyllaceae). Novon 11:322–324

    Article  Google Scholar 

  • Oxelman B, Rautenberg A, Thollesson M, Larsson A, Frajman B, Eggens F, Petri A, Aydin Z, Töpel M, Brandtberg-Falkman A (2013) Sileneae taxonomy and systematics. http://www.Sileneae.info. Accessed 14 July 2014

  • Pannell JR (1997) Widespread functional androdioecy in Mercurialis annua L. (Euphorbiaceae). Biol J Linn Soc 61:95–116

    Google Scholar 

  • Pannell JR, Obbard DJ, Buggs RJA (2004) Polyploidy and the sexual system: what can we learn from Mercurialis annua? Biol J Linn Soc 82:547–560

    Article  Google Scholar 

  • Pannell JR, Dorken ME, Pujol B, Berjano R (2008) Gender variation and transitions between sexual systems in Mercurialis annua (Euphorbiaceae). Int J Plant Sci 169:129–139

    Article  Google Scholar 

  • Petri A, Oxelman B (2011) Phylogenetic relationships within Silene (Caryophyllaceae) section Physolychnis. Taxon 60:953–968

    Google Scholar 

  • Pettersson MW (1992) Advantage of being a specialist female in the gynodioecious Silene vulgaris s.l. (Caryophyllaceae). Am J Bot 79:1389–1395

    Article  Google Scholar 

  • Popp M, Oxelman B (2004) Evolution of a RNA polymerase gene family in Silene (Caryophyllaceae)-incomplete concerted evolution and topological congruence among paralogues. Syst Biol 53:914–932

    Article  PubMed  Google Scholar 

  • Primack RB, Lloyd DG (1980) Sexual strategies in plants IV. The distributions of gender in two monomorphic shrub populations. N Z J Bot 18:109–114

    Article  Google Scholar 

  • Purrington CB, Schmitt J (1998) Consequences of sexually dimorphic timing of emergence and flowering in Silene latifolia. J Ecol 86:397–404

    Article  Google Scholar 

  • Qiu S, Bergero R, Zeng K, Charlesworth D (2011) Patterns of codon usage bias in Silene latifolia. Mol Biol Evol 28:771–780

    Article  CAS  PubMed  Google Scholar 

  • Rautenberg A, Hathaway L, Oxelman B, Prentice HC (2010) Geographic and phylogenetic patterns in Silene section Melandrium (Caryophyllaceae) as inferred from chloroplast and nuclear DNA sequences. Mol Phylogenet Evol 57:978–991

    Article  CAS  PubMed  Google Scholar 

  • Renner SS, Won H (2001) Repeated evolution of dioecy from monoecy in Siparunaceae (Laurales). Syst Biol 50:700–712

    Article  CAS  PubMed  Google Scholar 

  • Reynolds RJ, Westbrook MJ, Rohde AS, Cridland JM, Fenster CB, Dudash MR (2009) Pollinator specialization and pollination syndromes of three related North American Silene. Ecology 90:2077–2087

    Article  PubMed  Google Scholar 

  • Reynolds RJ, Kula AAR, Fenster CB, Dudash MR (2012) Variable nursery pollinator importance and its effect on plant reproductive success. Oecologia 168:439–448

    Article  PubMed  Google Scholar 

  • Richards AJ (1997) Plant breeding systems. Chapman & Hall, London, UK

    Book  Google Scholar 

  • Sakai AK, Weller SG (1999) Gender and sexual dimorphism in flowering plants: a review of terminology, biogeographic patterns, ecological correlates, and phylogenetic approaches. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 1–31

    Chapter  Google Scholar 

  • Sakai AK, Wagner WL, Ferguson DM, Herbst DR (1995) Origins of dioecy in the Hawaiian Flora. Ecology 76:2517–2529

    Article  Google Scholar 

  • Sanchez-Vilas J, Pannell JR (2011) Sexual dimorphism in resource acquisition and deployment: both size and timing matter. Ann Bot 107:119–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Sansome FW (1938) Sex determination in Silene otites and related species. J Genet 35:387–396

    Article  Google Scholar 

  • Schaefer HM, Ruxton GD (2011) Plant-animal communication. Oxford University Press, New York, NY

    Book  Google Scholar 

  • Shykoff JA, Bucheli E (1995) Pollinator visitation patterns, floral rewards and the probability of transmission of Microbotryum violaceum, a venereal disease of plants. J Ecol 83:189–198

    Article  Google Scholar 

  • Slancarova V, Zdanska J, Janousek B, Talianova M, Zschach C, Zluvova J, Siroky J, Kovacova V, Blavet H, Danihelka J, Oxelman B, Widmer A, Vyskot B (2013) Evolution of sex determination systems with heterogametic males and females in Silene. Evolution 67:3669–3677

    Article  PubMed  Google Scholar 

  • Spigler RB, Ashman TL (2012) Gynodioecy to dioecy: are we there yet? Ann Bot 109:531–543

    Article  PubMed  PubMed Central  Google Scholar 

  • Talavera S, Arista M, Salgueiro FJ (1996) Population size, pollination and breeding system of Silene stockenii Chater (Caryophyllaceae), an annual gynodioecious species of southern Spain. Bot Acta 109:333–339

    Article  Google Scholar 

  • Taylor DR, Olson MS, McCauley DE (2001) A quantitative genetic analysis of nuclear-cytoplasmic male sterility in structure populations of Silene vulgaris. Genetics 158:833–841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JD, Barrett CH (1981) Temporal variation of gender in Aralia hispida Vent. (Araliaceae). Evolution 35:1094–1107

    Article  Google Scholar 

  • Thrall PH, Biere A, Antonovics J (1993) Plant life-history and disease susceptibility—the occurrence of Ustilago violacea on different species within the Caryophyllaceae. J Ecol 81:489–498

    Article  Google Scholar 

  • Thrall PH, Antonovics J, Bever JD (1997) Sexual transmission of disease and host mating systems: within-season reproductive success. Am Nat 149:485–506

    Article  Google Scholar 

  • Torices R, Méndez M, Gómez JM (2011) Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms. New Phytol 190:234–248

    Article  PubMed  Google Scholar 

  • Van Nigtevech G (1966) Genetic studies in dioecious Melandrium. I. Sex-linked and sex-influenced inheritance in M. album and M. dioicum. Genetica 37:281–306

    Article  Google Scholar 

  • Verdú M, Montilla AI, Pannell JR (2004) Paternal effects on functional gender account for cryptic dioecy in a perennial plant. Proc R Soc Lond B 271:2017–2023

    Article  Google Scholar 

  • Vilas C, San Miguel E, Amaro R, Garcia C (2006) Relative contribution of inbreeding depression and eroded adaptive diversity to extinction risk in small populations of shore campion. Conserv Biol 20:229–238

    Article  PubMed  Google Scholar 

  • Waelti MO, Page PA, Widmer A, Schiestl FP (2009) How to be an attractive male: floral dimorphism and attractiveness to pollinators in a dioecious plant. BMC Evol Biol 9:190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiblen GD, Oyama RK, Donoghue MJ (2000) Phylogenetic analysis of dioecy in monocotyledons. Am Nat 155:46–58

    Article  PubMed  Google Scholar 

  • Weingartner LA, Delph LF (2014) Neo-sex chromosome inheritance across species in Silene hybrids. J Evol Biol 27:1491–1499

    Article  CAS  PubMed  Google Scholar 

  • Willson MF (1994) Sexual selection in plants: perspective and overview. Am Nat 144:S13–S39

    Article  Google Scholar 

  • Witt T, Jürgens A, Geyer R, Gottsberger G (1999) Nectar dynamics and sugar composition in flowers of Silene and Saponaria (Caryophyllaceae). Plant Biol 1:334–345

    Article  CAS  Google Scholar 

  • Witt T, Jürgens A, Gottsberger G (2013) Nectar sugar composition of European Caryophylloideae (Caryophyllaceae) in relation to flower length, pollination biology and phylogeny. J Evol Biol 26:2244–2259

    Article  CAS  PubMed  Google Scholar 

  • Wright JW, Meagher TR (2004) Selection on floral characters in natural Spanish populations of Silene latifolia. J Evol Biol 17:382–395

    Article  CAS  PubMed  Google Scholar 

  • Yampolsky C, Yampolsky H (1922) Distribution of sex forms in the phanerogamic flora. Bibliogr Genet 3:1–62

    Google Scholar 

  • Zluvova J, Zak J, Janousek B, Vyskot B (2010) Dioecious Silene latifolia plants show sexual dimorphism in the vegetative stage. BMC Plant Biol 10:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to the authors whose work has not been cited due to space constraints. The authors thank U. Lüttge for the invitation to participate in this issue, two anonymous reviewers for helpful comments on the manuscript, and Anna Crandell for English proofreading. This work was supported by FEDER funds and grants from the Spanish Ministry of Science and Innovation through a Research Personnel Training grant to ICS [BES-2010-031073] and the research projects CGL2009-08257 and CGL2012-37646.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés Casimiro-Soriguer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casimiro-Soriguer, I., Narbona, E., Buide, M.L. (2016). Diversity and Evolution of Sexual Strategies in Silene: A Review. In: Lüttge, U., Cánovas, F., Matyssek, R. (eds) Progress in Botany 77. Progress in Botany, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-25688-7_12

Download citation

Publish with us

Policies and ethics