Diversity and Evolution of Sexual Strategies in Silene: A Review

  • Inés Casimiro-SoriguerEmail author
  • Eduardo Narbona
  • M Luisa Buide
Part of the Progress in Botany book series (BOTANY, volume 77)


The variety and evolution of reproductive strategies in plants have attracted the attention of scientists for a long time. The genus Silene has been the focus of several studies related to the diversity and evolution of sexual systems. This review will summarize the huge amount of knowledge on sexual strategies in Silene species. Hermaphroditism is the most frequent condition in Silene; however, there is a relatively high frequency of gynodioecy and dioecy compared to angiosperms and dicotyledons. In some gynodioecious species, gynomonoecious individuals are common, forming a gynodioecious-gynomonoecious sexual system that is rare among angiosperms. Dioecy has independently evolved in the two phylogenetically supported subgenera of Silene, with a probable origin down the “gynodioecious pathway.” Heterogametic sex chromosomes have made S. latifolia and other dioecious species of the genus important models for the evolution of sex determination. In Silene species, studies on sexual expression at the plant and population level suggest that it is highly variable. Sexual dimorphism in reproductive and vegetative characters of dioecious species showed patterns that generally fit those found in other species. Compared with other genera of angiosperms, Silene presents a unique opportunity to evaluate the evolution of the different sexual systems and sex chromosomes (being of the few angiosperm genera with female heterogamety), the maintenance of gynodioecious and gynodioecious-gynomonoecious sexual systems, and the evolutionary implications of sexual dimorphism.


Sexual Dimorphism Cytoplasmic Male Sterility Female Flower Male Flower Sexual System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We apologize to the authors whose work has not been cited due to space constraints. The authors thank U. Lüttge for the invitation to participate in this issue, two anonymous reviewers for helpful comments on the manuscript, and Anna Crandell for English proofreading. This work was supported by FEDER funds and grants from the Spanish Ministry of Science and Innovation through a Research Personnel Training grant to ICS [BES-2010-031073] and the research projects CGL2009-08257 and CGL2012-37646.


  1. Ågren J, Danell K, Elmqvist T, Ericson L, Hjältén J (1999) Sexual dimorphism and biotic interactions. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 217–246CrossRefGoogle Scholar
  2. Alatalo JM, Molau U (2001) Pollen viability and limitation of seed production in a population of the circumpolar cushion plant, Silene acaulis (Caryophyllaceae). Nord J Bot 21:365–372CrossRefGoogle Scholar
  3. Alexander HM (1989) An experimental field study of anther-smut disease of Silene alba caused by Ustilago violacea: genotypic variation and disease incidence. Evolution 43:835–847CrossRefGoogle Scholar
  4. Antonovics J, Hood M, Partain J (2002) The ecology and genetics of a host shift: microbotryum as a model system. Am Nat 160:S40–S53PubMedCrossRefGoogle Scholar
  5. Ashman TL (2009) Sniffing out patterns of sexual dimorphism in floral scent. Funct Ecol 23:852–862CrossRefGoogle Scholar
  6. Austen EJ, Weis AE (2014) Temporal variation in phenotypic gender and expected functional gender within and among individuals in an annual plant. Ann Bot 114:167–177PubMedPubMedCentralCrossRefGoogle Scholar
  7. Austerlitz F, Gleiser G, Teixeira S, Bernasconi G (2012) The effects of inbreeding, genetic dissimilarity and phenotype on male reproductive success in a dioecious plant. Proc R Soc B 279:91–100PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bailey MF, Delph LF (2007a) A field guide to models of sex-ratio evolution in gynodioecious species. Oikos 116:1609–1617CrossRefGoogle Scholar
  9. Bailey MF, Delph LF (2007b) Sex-ratio evolution in nuclear-cytoplasmic gynodioecy when restoration is a threshold trait. Genetics 176:2465–2476PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bailey MF, McCauley DE (2005) Offspring sex ratio under inbreeding and outbreeding in a gynodioecious plant. Evolution 59:287–295PubMedCrossRefGoogle Scholar
  11. Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284PubMedCrossRefGoogle Scholar
  12. Barrett SCH (2013) The evolution of plant reproductive systems: how often are transitions irreversible? Proc R Soc B 280:20130913PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barrett SCH, Harder LD (2006) David G. Lloyd and the evolution of floral biology: from natural history to strategic analysis. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, New York, NY, pp 1–21Google Scholar
  14. Barrett SCH, Hough J (2013) Sexual dimorphism in flowering plants. J Exp Bot 64:67–82PubMedCrossRefGoogle Scholar
  15. Barrett SCH, Yakimowski SB, Field DL, Pickup M (2010) Ecological genetics of sex ratios in plant populations. Philos Trans R Soc Lond B Biol Sci 365:2549–2557PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bateman AJ (1948) Intrasexual selection in Drosophila. Heredity 2:349–368PubMedCrossRefGoogle Scholar
  17. Bawa KS (1980) Evolution of dioecy in flowering plants. Annu Rev Ecol Syst 11:15–39CrossRefGoogle Scholar
  18. Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102PubMedCrossRefGoogle Scholar
  19. Bernasconi G, Antonovics J, Biere A, Charlesworth D, Delph LF, Filatov D, Giraud T, Hood ME, Marais GAB, McCauley D, Pannell JR, Shykoff JA, Vyskot B, Wolfe LM, Widmer A (2009) Silene as a model system in ecology and evolution. Heredity 103:5–14PubMedCrossRefGoogle Scholar
  20. Bertin RI, Newman CN (1993) Dichogamy in angiosperms. Bot Rev 59:112–150CrossRefGoogle Scholar
  21. Brunet J, Charlesworth D (1995) Floral sex allocation in sequentially blooming plants. Evolution 49:70–79CrossRefGoogle Scholar
  22. Carlsson-Granér U, Elmqvist T, Ågren J, Gardfjell H, Ingvarsson P (1998) Floral sex ratios, disease and seed set in dioecious Silene dioica. J Ecol 86:79–91CrossRefGoogle Scholar
  23. Carroll SB, Delph LF (1996) The effects of gender and plant architecture on allocation to flowers in dioecious Silene latifolia (Caryophyllaceae). Int J Plant Sci 157:493–500CrossRefGoogle Scholar
  24. Carroll SB, Mulcahy DL (1993) Progeny sex ratios in dioecious Silene latifolia (Caryophyllaceae). Am J Bot 80:551–556CrossRefGoogle Scholar
  25. Casimiro-Soriguer I (2015) Sistemas sexuales y polimorfismo de color en Silene: una aproximación en la sección Psammophilae. Ph.D. dissertation, Pablo de Olavide University, SevilleGoogle Scholar
  26. Casimiro-Soriguer I, Buide ML, Narbona E (2013) The roles of female and hermaphroditic flowers in the gynodioecious-gynomonoecious Silene littorea: insights into the phenology of sex expression. Plant Biol 15:941–947PubMedCrossRefGoogle Scholar
  27. Casimiro-Soriguer I, Buide ML, Narbona E (2015) Diversity of sexual systems within different lineages of the genus Silene. AoB Plants 7:plv037PubMedPubMedCentralCrossRefGoogle Scholar
  28. Charlesworth D (1999) Theories of the evolution of dioecy. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 33–60CrossRefGoogle Scholar
  29. Charlesworth D (2013) Plant sex chromosome evolution. J Exp Bot 64:405–420PubMedCrossRefGoogle Scholar
  30. Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997CrossRefGoogle Scholar
  31. Charlesworth D, Laporte V (1998) The male-sterility polymorphism of Silene vulgaris: analysis of genetic data from two populations and comparison with Thymus vulgaris. Genetics 150:1267–1282PubMedPubMedCentralGoogle Scholar
  32. Cox PA (1981) Niche partitioning between sexes of dioecious plants. Am Nat 117:295–307CrossRefGoogle Scholar
  33. Crossman A, Charlesworth D (2014) Breakdown of dioecy: models where males acquire cosexual functions. Evolution 68:426–440PubMedCrossRefGoogle Scholar
  34. Cruden RW, Hermann-Parker SM (1977) Temporal dioecism: an alternative to dioecism. Evolution 31:863–866CrossRefGoogle Scholar
  35. Cruden RW, Lloyd RM (1995) Embryophytes have equivalent sexual phenotypes and breeding systems: why not a common terminology to describe them? Am J Bot 82:816–825CrossRefGoogle Scholar
  36. Darwin C (1877) The different forms of flowers on plants of the same species. John Murray, LondonCrossRefGoogle Scholar
  37. Davis SL, Delph LF (2005) Prior selfing and gynomonoecy in Silene noctiflora L. (Caryophyllaceae): opportunities for enhanced outcrossing and reproductive assurance. Int J Plant Sci 166:475–480CrossRefGoogle Scholar
  38. De Jong TJ, Shmida A, Thuijsman F (2008) Sex allocation in plants and the evolution of monoecy. Evol Ecol Res 10:1087–1109Google Scholar
  39. Delph LF (1999) Sexual dimorphism in life history. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 149–173CrossRefGoogle Scholar
  40. Delph LF (2003) Sexual dimorphism in gender plasticity and its consequences for breeding system evolution. Evol Dev 5:34–39PubMedCrossRefGoogle Scholar
  41. Delph LF, Carroll SB (2001) Factors affecting relative seed fitness and female frequency in a gynodioecious species, Silene acaulis. Evol Ecol Res 3:487–505Google Scholar
  42. Delph LF, Herlihy CR (2012) Sexual, fecundity, and viability selection on flower size and number in a sexually dimorphic plant. Evolution 66:1154–1166PubMedCrossRefGoogle Scholar
  43. Delph LF, Meagher TR (1995) Sexual dimorphism masks life history trade-offs in the dioecious plant Silene latifolia. Ecology 76:775–785CrossRefGoogle Scholar
  44. Delph LF, Wolf DE (2005) Evolutionary consequences of gender plasticity in genetically dimorphic breeding systems. New Phytol 166:119–128PubMedCrossRefGoogle Scholar
  45. Delph LF, Knapczyk FN, Taylor DR (2002) Among-population variation and correlations in sexually dimorphic traits of Silene latifolia. J Evol Biol 15:1011–1020CrossRefGoogle Scholar
  46. Delph LF, Gehring JL, Frey FM, Arntz M, Levri M (2004) Genetic constraints on floral evolution in a sexually dimorphic plant revealed by artificial selection. Evolution 58:1936–1946PubMedCrossRefGoogle Scholar
  47. Delph LF, Gehring JL, Arntz AM, Levri M, Frey FM (2005) Genetic correlations with floral display lead to sexual dimorphism in the cost of reproduction. Am Nat 166:S31–S41PubMedCrossRefGoogle Scholar
  48. Desfeux C, Maurice S, Henry JP, Lejeune B, Gouyon PH (1996) Evolution of reproductive systems in the genus Silene. Proc R Soc Lond 263:409–414CrossRefGoogle Scholar
  49. Devlin B, Stephenson AG (1987) Sexual variations among plants of a perfect-flowered species. Am Nat 130:199–218CrossRefGoogle Scholar
  50. Dufay M, Billard E (2012) How much better are females? The occurrence of female advantage, its proximal causes and its variation within and among gynodioecious species. Ann Bot 109:505–519PubMedPubMedCentralCrossRefGoogle Scholar
  51. Dufay M, Lahiani E, Brachi B (2010) Gender variation and inbreeding depression in gynodioecious-gynomonoecious Silene nutans (Caryophyllaceae). Int J Plant Sci 171:53–62CrossRefGoogle Scholar
  52. Dufay M, Champelovier P, Käfer J, Henry JP, Mousset S, Marais GAB (2014) An angiosperm-wide analysis of the gynodioecy-dioecy pathway. Ann Bot 114:539–548PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dykstra AB, Brock MT, Delph LF, Weinig C (2009) Sex-specific trade-offs and responses to foliar shade in the gynodioecious species Silene vulgaris (Caryophyllaceae). Int J Plant Sci 170:575–583CrossRefGoogle Scholar
  54. Eckhart VM (1999) Sexual dimorphism in flowers and inflorescences. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 123–148CrossRefGoogle Scholar
  55. Ehlers BK, Thompson JD (2004) Temporal variation in sex allocation in hermaphrodites of gynodioecious Thymus vulgaris L. J Ecol 92:15–23CrossRefGoogle Scholar
  56. Elle E, Meagher TR (2000) Sex allocation and reproductive success in the andromonoecious perennial Solanum carolinense (Solanaceae). II. Paternity and functional gender. Am Nat 156:622–636CrossRefGoogle Scholar
  57. Erixon P, Oxelman B (2008) Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS One 1:e1386CrossRefGoogle Scholar
  58. Filatov DA (2005) Evolutionary history of Silene latifolia sex chromosomes revealed by genetic mapping of four genes. Genetics 170:975–979PubMedPubMedCentralCrossRefGoogle Scholar
  59. Fleming TH, Maurice S, Buchmann SL, Tuttle MD (1994) Reproductive biology and relative male and female fitness in a trioecious cactus, Pachycereus pringlei (Cactaceae). Am J Bot 81:858–867CrossRefGoogle Scholar
  60. Folke SH, Delph LF (1997) Environmental and physiological effects on pistillate flower production in Silene noctiflora L. (Caryophyllaceae). Int J Plant Sci 158:501–509CrossRefGoogle Scholar
  61. Garraud C, Brachi B, Dufay M, Touzet P, Shykoff JA (2011) Genetic determination of male sterility in gynodioecious Silene nutans. Heredity 106:757–764PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gehring JL, Linhart YB (1993) Sexual dimorphism and response to low resources in the dioecious plant Silene latifolia (Caryophyllaceae). Int J Plant Sci 154:152–162CrossRefGoogle Scholar
  63. Gehring JL, Scoby J, Parsons M, Delph LF (2004) Whole-plant investment in nectar is greater for males than pollinated females in the dioecious plant Silene latifolia. Evol Ecol Res 6:1237–1252Google Scholar
  64. Gleiser G, Verdú M, Segarra-Moragues JG, González-Martínez SC, Pannell JR (2008) Disassortative mating, sexual specialization, and the evolution of gender dimorphism in heterodichogamous Acer opalus. Evolution 62:1676–1688PubMedCrossRefGoogle Scholar
  65. Golenberg EM, West NW (2013) Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. Am J Bot 100:1022–1037PubMedCrossRefGoogle Scholar
  66. Guitián P, Medrano M (2000) Sex expression and fruit set in Silene littorea (Caryophyllaceae): variation among populations. Nord J Bot 20:467–473CrossRefGoogle Scholar
  67. Harder LD, Barrett SCH (2006) Ecology and evolution of flowers. Oxford University Press, Oxford, UKGoogle Scholar
  68. Hood ME, Mena-Alí JI, Gibson AK, Oxelman B, Giraud T, Yockteng R, Arroyo MTK, Conti F, Pedersen AB, Gladieux P, Antonovics J (2010) Distribution of the anther-smut pathogen Microbotryum on species of the Caryophyllaceae. New Phytol 187:217–229PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jolls CL, Chenier TC, Hatley CL (1994) Spectrophotometric analysis of nectar production in Silene vulgaris (Caryophyllaceae). Am J Bot 81:60–64CrossRefGoogle Scholar
  70. Jürgens A, Witt T, Gottsberger G (1996) Reproduction and pollination in Central European populations of Silene and Saponaria species. Bot Acta 109:316–324CrossRefGoogle Scholar
  71. Jürgens A, Witt T, Gottsberger G (2002) Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination, life form, style number, and sexual system. Sex Plant Reprod 14:279–289CrossRefGoogle Scholar
  72. Käfer J, Talianová M, Bigot T, Michu E, Guéguen L, Widmer A, Žlůvová J, Glémin S (2013) Patterns of molecular evolution in dioecious and non-dioecious Silene. J Evol Biol 26:335–346PubMedCrossRefGoogle Scholar
  73. Kaltz O, Shykoff JA (2001) Male and female Silene latifolia plants differ in per-contact risk of infection by a sexually transmitted disease. J Ecol 89:99–109CrossRefGoogle Scholar
  74. Kay QON, Lack AJ, Bamber FC, Davies CR (1984) Differences between sexes in floral morphology, nectar production and insect visits in a dioecious species, Silene dioica. New Phytol 98:515–529CrossRefGoogle Scholar
  75. Kephart S, Reynolds RJ, Rutter MT, Fenster CB, Dudash MR (2006) Pollination and seed predation by moths on Silene and allied Caryophyllaceae: evaluating a model system to study the evolution of mutualisms. New Phytol 169:667–680PubMedCrossRefGoogle Scholar
  76. Knuth P (1908) Handbook of flower pollination, vol II (English translation by JR Ainsworth Davis). Clarendon Press, Oxford, UKGoogle Scholar
  77. Koelewijn HP, Van Damme JMM (1996) Gender variation, partial male sterility and labile sex expression in gynodioecious Plantago coronopus. New Phytol 132:67–76CrossRefGoogle Scholar
  78. Lafuma L, Maurice S (2006) Reproductive characters in a gynodioecious species, Silene italica (Caryophyllaceae), with attention to the gynomonoecious phenotype. Biol J Linn Soc 87:583–591CrossRefGoogle Scholar
  79. Laporte MM, Delph LF (1996) Sex-specific physiology and source-sink relations in the dioecious plant Silene latifolia. Oecologia 106:63–72CrossRefGoogle Scholar
  80. Lloyd DG (1976) The transmission of genes via pollen and ovules in gynodioecious angiosperms. Theor Popul Biol 9:299–316PubMedCrossRefGoogle Scholar
  81. Lloyd DG (1979) Parental strategies in angiosperms. N Z J Bot 17:595–606CrossRefGoogle Scholar
  82. Lloyd DG (1980) Sexual strategies in plants. III. A quantitative method for describing the gender of plants. N Z J Bot 18:103–108CrossRefGoogle Scholar
  83. Lloyd DG, Bawa KS (1984) Modification of the gender of seed plants in varying conditions. Evol Biol 17:255–338CrossRefGoogle Scholar
  84. Lovett Doust J, O’Brien G, Lovett Doust L (1987) Effect of density on secondary sex characteristics and sex ratio in Silene alba (Caryophyllaceae). Am J Bot 74:40–46CrossRefGoogle Scholar
  85. Mabberley DJ (2008) Mabberley’s plant-book. Cambridge University Press, Cambridge, UKGoogle Scholar
  86. Marais GAB, Forrest A, Kamau E, Käfer J, Daubin V, Charlesworth D (2011) Multiple nuclear gene phylogenetic analysis of the evolution of dioecy and sex chromosomes in the genus Silene. PLoS One 6:e21915PubMedPubMedCentralCrossRefGoogle Scholar
  87. Matsunaga S, Isono E, Kejnovsky E, Vyskot B, Dolezel J, Kawano S, Charlesworth D (2003) Duplicative transfer of a MADS box gene to a plant Y chromosome. Mol Biol Evol 20:1062–1069PubMedCrossRefGoogle Scholar
  88. Maurice S (1999) Gynomonoecy in Silene italica (Caryophyllaceae): sexual phenotypes in natural populations. Plant Biol 1:346–350CrossRefGoogle Scholar
  89. Maurice S, Charlesworth D, Desfeux C, Couvet D, Gouyon PH (1993) The evolution of gender in hermaphrodites of gynodioecious populations with nucleo-cytoplasmic male-sterility. Proc R Soc Lond B 251:253–261CrossRefGoogle Scholar
  90. Maurice S, Desfeux C, Mignot A, Henry JP (1999) Is Silene acaulis (Caryophyllaceae) a trioecious species? Reproductive biology of two subspecies. Can J Bot 76:478–485Google Scholar
  91. Meagher TR (1992) The quantitative genetics of sexual dimorphism in Silene latifolia (Caryophyllaceae). I Genetic variation. Evolution 46:445–457CrossRefGoogle Scholar
  92. Meagher TR (1999) The quantitative genetics of sexual dimorphism. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 275–294CrossRefGoogle Scholar
  93. Meagher TR, Costich DE (1994) Sexual dimorphism in nuclear DNA content and floral morphology in populations of Silene. Am J Bot 81:1198–1204CrossRefGoogle Scholar
  94. Meagher TR, Costich DE (2004) ‘Junk’ DNA and long-term phenotypic evolution in Silene section Elisanthe (Caryophyllaceae). Proc R Soc Lond B 271:S493–S497CrossRefGoogle Scholar
  95. Meagher TR, Vassiliadis C (2005) Phenotypic impacts of repetitive DNA in flowering plants. New Phytol 168:71–80PubMedCrossRefGoogle Scholar
  96. Meagher TR, Gillies ACM, Costich DE (2005) Genome size, quantitative genetics and the genomic basis for flower size evolution in Silene latifolia. Ann Bot 95:247–254PubMedPubMedCentralCrossRefGoogle Scholar
  97. Méndez M (1998) Modification of phenotypic and functional gender in the monoecious Arum italicum (Araceae). Am J Bot 85:225–234PubMedCrossRefGoogle Scholar
  98. Ming R, Moore PH (2007) Genomics of sex chromosomes. Curr Opin Plant Biol 10:123–130PubMedCrossRefGoogle Scholar
  99. Mrackova M, Nicolas M, Hobza R, Negrutiu I, Monéger F, Widmer A, Vyskot B, Janousek B (2008) Independent origin of sex chromosomes in two species of the genus Silene. Genetics 179:1129–1133PubMedPubMedCentralCrossRefGoogle Scholar
  100. Muenchow GE, Grebus M (1989) The evolution of dioecy from distyly: reevaluation of the hypothesis of the loss of long-tongued pollinators. Am Nat 133:149–156CrossRefGoogle Scholar
  101. Müller H (1883) The fertilization of flowers. Macmillan, London, UKGoogle Scholar
  102. Narbona E, Ortiz PL, Arista M (2005) Dichogamy and sexual dimorphism in floral traits in the andromonoecious Euphorbia boetica. Ann Bot 95:779–787PubMedPubMedCentralCrossRefGoogle Scholar
  103. Narbona E, Ortiz PL, Arista M (2011) Linking self-incompatibility, dichogamy and flowering synchrony in two Euphorbia species: alternative mechanisms for avoiding self-fertilization? PLoS One 6:e20668PubMedPubMedCentralCrossRefGoogle Scholar
  104. Neal PR, Anderson GJ (2005) Are ‘mating systems’ ‘breeding systems’ of inconsistent and confusing terminology in plant reproductive biology? or is it the other way around? Plant Syst Evol 250:173–185CrossRefGoogle Scholar
  105. Oxelman B, Lidén M, Turland NJ (2001) Taxonomic and nomenclatural notes on Chinese Silene (Caryophyllaceae). Novon 11:322–324CrossRefGoogle Scholar
  106. Oxelman B, Rautenberg A, Thollesson M, Larsson A, Frajman B, Eggens F, Petri A, Aydin Z, Töpel M, Brandtberg-Falkman A (2013) Sileneae taxonomy and systematics. Accessed 14 July 2014
  107. Pannell JR (1997) Widespread functional androdioecy in Mercurialis annua L. (Euphorbiaceae). Biol J Linn Soc 61:95–116Google Scholar
  108. Pannell JR, Obbard DJ, Buggs RJA (2004) Polyploidy and the sexual system: what can we learn from Mercurialis annua? Biol J Linn Soc 82:547–560CrossRefGoogle Scholar
  109. Pannell JR, Dorken ME, Pujol B, Berjano R (2008) Gender variation and transitions between sexual systems in Mercurialis annua (Euphorbiaceae). Int J Plant Sci 169:129–139CrossRefGoogle Scholar
  110. Petri A, Oxelman B (2011) Phylogenetic relationships within Silene (Caryophyllaceae) section Physolychnis. Taxon 60:953–968Google Scholar
  111. Pettersson MW (1992) Advantage of being a specialist female in the gynodioecious Silene vulgaris s.l. (Caryophyllaceae). Am J Bot 79:1389–1395CrossRefGoogle Scholar
  112. Popp M, Oxelman B (2004) Evolution of a RNA polymerase gene family in Silene (Caryophyllaceae)-incomplete concerted evolution and topological congruence among paralogues. Syst Biol 53:914–932PubMedCrossRefGoogle Scholar
  113. Primack RB, Lloyd DG (1980) Sexual strategies in plants IV. The distributions of gender in two monomorphic shrub populations. N Z J Bot 18:109–114CrossRefGoogle Scholar
  114. Purrington CB, Schmitt J (1998) Consequences of sexually dimorphic timing of emergence and flowering in Silene latifolia. J Ecol 86:397–404CrossRefGoogle Scholar
  115. Qiu S, Bergero R, Zeng K, Charlesworth D (2011) Patterns of codon usage bias in Silene latifolia. Mol Biol Evol 28:771–780PubMedCrossRefGoogle Scholar
  116. Rautenberg A, Hathaway L, Oxelman B, Prentice HC (2010) Geographic and phylogenetic patterns in Silene section Melandrium (Caryophyllaceae) as inferred from chloroplast and nuclear DNA sequences. Mol Phylogenet Evol 57:978–991PubMedCrossRefGoogle Scholar
  117. Renner SS, Won H (2001) Repeated evolution of dioecy from monoecy in Siparunaceae (Laurales). Syst Biol 50:700–712PubMedCrossRefGoogle Scholar
  118. Reynolds RJ, Westbrook MJ, Rohde AS, Cridland JM, Fenster CB, Dudash MR (2009) Pollinator specialization and pollination syndromes of three related North American Silene. Ecology 90:2077–2087PubMedCrossRefGoogle Scholar
  119. Reynolds RJ, Kula AAR, Fenster CB, Dudash MR (2012) Variable nursery pollinator importance and its effect on plant reproductive success. Oecologia 168:439–448PubMedCrossRefGoogle Scholar
  120. Richards AJ (1997) Plant breeding systems. Chapman & Hall, London, UKCrossRefGoogle Scholar
  121. Sakai AK, Weller SG (1999) Gender and sexual dimorphism in flowering plants: a review of terminology, biogeographic patterns, ecological correlates, and phylogenetic approaches. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 1–31CrossRefGoogle Scholar
  122. Sakai AK, Wagner WL, Ferguson DM, Herbst DR (1995) Origins of dioecy in the Hawaiian Flora. Ecology 76:2517–2529CrossRefGoogle Scholar
  123. Sanchez-Vilas J, Pannell JR (2011) Sexual dimorphism in resource acquisition and deployment: both size and timing matter. Ann Bot 107:119–126PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sansome FW (1938) Sex determination in Silene otites and related species. J Genet 35:387–396CrossRefGoogle Scholar
  125. Schaefer HM, Ruxton GD (2011) Plant-animal communication. Oxford University Press, New York, NYCrossRefGoogle Scholar
  126. Shykoff JA, Bucheli E (1995) Pollinator visitation patterns, floral rewards and the probability of transmission of Microbotryum violaceum, a venereal disease of plants. J Ecol 83:189–198CrossRefGoogle Scholar
  127. Slancarova V, Zdanska J, Janousek B, Talianova M, Zschach C, Zluvova J, Siroky J, Kovacova V, Blavet H, Danihelka J, Oxelman B, Widmer A, Vyskot B (2013) Evolution of sex determination systems with heterogametic males and females in Silene. Evolution 67:3669–3677PubMedCrossRefGoogle Scholar
  128. Spigler RB, Ashman TL (2012) Gynodioecy to dioecy: are we there yet? Ann Bot 109:531–543PubMedPubMedCentralCrossRefGoogle Scholar
  129. Talavera S, Arista M, Salgueiro FJ (1996) Population size, pollination and breeding system of Silene stockenii Chater (Caryophyllaceae), an annual gynodioecious species of southern Spain. Bot Acta 109:333–339CrossRefGoogle Scholar
  130. Taylor DR, Olson MS, McCauley DE (2001) A quantitative genetic analysis of nuclear-cytoplasmic male sterility in structure populations of Silene vulgaris. Genetics 158:833–841PubMedPubMedCentralGoogle Scholar
  131. Thomson JD, Barrett CH (1981) Temporal variation of gender in Aralia hispida Vent. (Araliaceae). Evolution 35:1094–1107CrossRefGoogle Scholar
  132. Thrall PH, Biere A, Antonovics J (1993) Plant life-history and disease susceptibility—the occurrence of Ustilago violacea on different species within the Caryophyllaceae. J Ecol 81:489–498CrossRefGoogle Scholar
  133. Thrall PH, Antonovics J, Bever JD (1997) Sexual transmission of disease and host mating systems: within-season reproductive success. Am Nat 149:485–506CrossRefGoogle Scholar
  134. Torices R, Méndez M, Gómez JM (2011) Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms. New Phytol 190:234–248PubMedCrossRefGoogle Scholar
  135. Van Nigtevech G (1966) Genetic studies in dioecious Melandrium. I. Sex-linked and sex-influenced inheritance in M. album and M. dioicum. Genetica 37:281–306CrossRefGoogle Scholar
  136. Verdú M, Montilla AI, Pannell JR (2004) Paternal effects on functional gender account for cryptic dioecy in a perennial plant. Proc R Soc Lond B 271:2017–2023CrossRefGoogle Scholar
  137. Vilas C, San Miguel E, Amaro R, Garcia C (2006) Relative contribution of inbreeding depression and eroded adaptive diversity to extinction risk in small populations of shore campion. Conserv Biol 20:229–238PubMedCrossRefGoogle Scholar
  138. Waelti MO, Page PA, Widmer A, Schiestl FP (2009) How to be an attractive male: floral dimorphism and attractiveness to pollinators in a dioecious plant. BMC Evol Biol 9:190PubMedPubMedCentralCrossRefGoogle Scholar
  139. Weiblen GD, Oyama RK, Donoghue MJ (2000) Phylogenetic analysis of dioecy in monocotyledons. Am Nat 155:46–58PubMedCrossRefGoogle Scholar
  140. Weingartner LA, Delph LF (2014) Neo-sex chromosome inheritance across species in Silene hybrids. J Evol Biol 27:1491–1499PubMedCrossRefGoogle Scholar
  141. Willson MF (1994) Sexual selection in plants: perspective and overview. Am Nat 144:S13–S39CrossRefGoogle Scholar
  142. Witt T, Jürgens A, Geyer R, Gottsberger G (1999) Nectar dynamics and sugar composition in flowers of Silene and Saponaria (Caryophyllaceae). Plant Biol 1:334–345CrossRefGoogle Scholar
  143. Witt T, Jürgens A, Gottsberger G (2013) Nectar sugar composition of European Caryophylloideae (Caryophyllaceae) in relation to flower length, pollination biology and phylogeny. J Evol Biol 26:2244–2259PubMedCrossRefGoogle Scholar
  144. Wright JW, Meagher TR (2004) Selection on floral characters in natural Spanish populations of Silene latifolia. J Evol Biol 17:382–395PubMedCrossRefGoogle Scholar
  145. Yampolsky C, Yampolsky H (1922) Distribution of sex forms in the phanerogamic flora. Bibliogr Genet 3:1–62Google Scholar
  146. Zluvova J, Zak J, Janousek B, Vyskot B (2010) Dioecious Silene latifolia plants show sexual dimorphism in the vegetative stage. BMC Plant Biol 10:208PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Inés Casimiro-Soriguer
    • 1
    • 2
    Email author
  • Eduardo Narbona
    • 1
  • M Luisa Buide
    • 1
  1. 1.Área de Botánica, Departamento de Biología Molecular e Ingeniería BioquímicaUniversidad Pablo de OlavideSevillaSpain
  2. 2.Área de Botánica, Departamento de Biología Vegetal y EcologíaUniversidad de SevillaSevillaSpain

Personalised recommendations