Skip to main content

Cancer Stem Cell Markers: Classification and Their Significance in Cancer Stem Cells

  • Chapter
  • First Online:

Abstract

This chapter is dealing with identification of cancer stem cell markers, their latest classification, function in normal and cancer stem cells (CSCs), and their use in development of novel targeted antitumor therapy. It was difficult to prove the CSCs existence, unless the in vivo and in vitro experiments have been done supporting the theory that they have common clonogenic origin and perpetuate always the same phenotypic marker(s) on their surface, being also able to induce production of original tumor in transplanted NOD/SCID mice. The cancer stem cells so far have been found in most of human tissues and checked as well, in agar, for anchorage growth. Today they can be isolated using magnetic beads coated with antibodies targeted against specific markers.

Their tumorigenicity is high, while other cancer cells either do not express it or with a very low intensity. That is why idea of targeted antitumor therapy now has as a goal to target CSCs since in that case the cancer would have been removed forever. Reoccurrence is due to omitting the correct target (CSCs) and targeting other tumor cell and normal tissues. The research in this field is very extensive and requires more knowledge on cellular, molecular, and supramolecular levels.

A thinker sees his own actions as experiments and questions—as attempts to find out something. Success and failure are for him answers above all.

Friedrich Nietzsche

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. National Center for Health Statistics. Leading causes of death. http://www.cdc.gov/nchs/fastats/lcod.htm. Accessed 09 Oct 2013

  2. National Center for Health Statistics. Estimates of funding for Various Research, Condition, and Disease Categories (RCDC). http://report.nih.gov/categorical_spending.aspx. Accessed 09 Oct 2013

  3. Mayfield J, Pavlovic M (2014) A concept of cancer stem cells: the current understanding and a look ahead. Anest Reanim Transfuziol 41(1–2):27–31

    Google Scholar 

  4. Pavlovic M (2014) Very small embryonic like cells (VSELs): pros and cons—review and perspectives in the light of critical data and controversies. Anest Reanim Transfuziol 41(1–2):33–48

    Google Scholar 

  5. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL et al (2012) Highlights from recent cancer literature. Cancer Res 72:13

    Google Scholar 

  6. Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12(2):133–143

    Google Scholar 

  7. Al-Sarraf M, Martz K, Herskovic A, Leichman L, Brindle JS, Vaitkevicius VK et al (1997) Progress report of combined chemoradiotherapy versus radiotherapy alone in patients with esophageal cancer: an intergroup study. J Clin Oncol 15(1):277–284

    Article  Google Scholar 

  8. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  Google Scholar 

  9. Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment. Cancer 104(6):1129–1137

    Article  Google Scholar 

  10. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298(5593):597–600

    Article  Google Scholar 

  11. Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5(11):1471

    Article  Google Scholar 

  12. Gil J, Stembalska A, Pesz KA, Sasiadek MM (2008) Cancer stem cells: the theory and perspectives in cancer therapy. J Appl Genet 49(2):193

    Article  Google Scholar 

  13. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751

    Article  Google Scholar 

  14. Lu B, Chiou SH, Deutsch E, Lorico A (2011) Cancer stem cells. J Oncol 2011, 269437. doi:10.1155/2011/269437, Accessed 7 Jul 2013

    Article  Google Scholar 

  15. Gugjoo MB, Amarpal S, Ahmad SR, Yatoo MA, Ahsan-ul-Haq S (2012) Cancer stem cell. Int J Livest Res 2(3):215–218

    Google Scholar 

  16. Williams JL (2012) Cancer stem cells. Clin Lab Sci 25(1):50

    Google Scholar 

  17. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg R et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659

    Article  Google Scholar 

  18. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15(9):1010–1012

    Article  Google Scholar 

  19. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    Article  Google Scholar 

  20. Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N et al (2009) A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell 15(6):489–500

    Article  Google Scholar 

  21. Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324(5935):1670–1673

    Article  Google Scholar 

  22. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822–829

    Article  Google Scholar 

  23. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69(19):7507–7511

    Article  Google Scholar 

  24. Jamieson CHM, Ailles L, Reya T, Weissman IL. US Patent No. 7,622,255. 24 Nov 2009

    Google Scholar 

  25. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215

    Article  Google Scholar 

  26. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    Article  Google Scholar 

  27. Li C, Lee CJ, Simeone DM (2009) Identification of human pancreatic cancer stem cells. In: Yu JS (ed) Cancer stem cells. Humana, New York, pp 161–173

    Chapter  Google Scholar 

  28. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983

    Article  Google Scholar 

  29. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  Google Scholar 

  30. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603

    Article  Google Scholar 

  31. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313

    Article  Google Scholar 

  32. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M et al (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485

    Article  Google Scholar 

  33. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  Google Scholar 

  34. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458(7239):776–779

    Article  Google Scholar 

  35. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951

    Article  Google Scholar 

  36. Jachetti E, Mazzoleni S, Grioni M, Ricupito A, Brambillasca C, Generoso L et al (2013) Prostate cancer stem cells are targets of both innate and adaptive immunity and elicit tumor-specific immune responses. Oncoimmunology 2(5), e24520

    Article  Google Scholar 

  37. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    Google Scholar 

  38. Vermeulen L, Felipe de Sousa EM, Van der Heijden M, Cameron K, de Jong JH, Borovski T et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476

    Article  Google Scholar 

  39. Puglisi MA, Tesori V, Lattanzi W, Gasbarrini GB, Gasbarrini A (2013) Colon cancer stem cells: controversies and perspectives. World J Gastroenterol 19(20):2997

    Article  Google Scholar 

  40. Shukrun R, Shakked NP, Dekel B (2013) Targeted therapy aimed at cancer stem cells: Wilm’s tumor as an example. Pediatr Nephrol 28(6):1–9

    Google Scholar 

  41. Fisher B, Wolmark N, Rockette H, Redmond C, Deutsch M, Wickerham DL et al (1988) Postoperative adjuvant chemotherapy or radiation therapy for rectal cancer: results from NSABP protocol R-011. J Natl Cancer Inst 80(1):21–29

    Article  Google Scholar 

  42. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649

    Article  Google Scholar 

  43. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771

    Article  Google Scholar 

  44. Gaitanis A, Staal S (2010) Liposomal doxorubicin and nab-paclitaxel: nanoparticle cancer chemotherapy in current clinical use. Cancer nanotechnology. Humana, New York, pp 385–392

    Google Scholar 

  45. Graishar WJ, Tjulndin S, Davidson N, Shaw H, Desai N, Bhar P et al (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803

    Article  Google Scholar 

  46. Farokhzad OC, Jon S, Khademhosseini A, Tran TNT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672

    Article  Google Scholar 

  47. Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y et al (2004) Disruption of cancer cell replication by alternating electric fields. Cancer Res 64(9):3288–3295

    Article  Google Scholar 

  48. Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V et al (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–2202

    Article  Google Scholar 

  49. Dylla SJ, Park I-K, Gurney AL (2009) Cancer stem cells. In: Uma L, Chesnut JD, Bhaskar T (eds) Emerging technology platforms for stem cells. Wiley, Hoboken, p 129

    Chapter  Google Scholar 

  50. Pavlovic M, Balint B (2013) Stem cells and tissue engineering. Springer, New York

    Book  Google Scholar 

  51. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3220457/

  52. http://ucsdnews.ucsd.edu/pressrelease/monoclonal_antibody_targets_kills_leukemia_cells

  53. http://www.ncbi.nlm.nih.gov/pubmed/16998484

  54. http://cancerres.aacrjournals.org/content/early/2013/01/04/0008-5472.CAN-12-2221.full.pdf

  55. http://www.cancerletters.info/article/S0304-3835%2813%2900832-X/abstract

  56. http://clincancerres.aacrjournals.org/content/17/19/6174.full.pdf

  57. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2361410/#bib21

  58. www.researchgate.net/…Integrin_alpha_6…cells/…/d912f50.

  59. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772775/

  60. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365812/

  61. http://mct.aacrjournals.org/content/3/3/345.long

  62. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730396/

  63. http://www.fasebj.org/content/17/9/984.full

  64. http://www.jci.org/articles/view/42550

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Pavlovic, M., Balint, B. (2015). Cancer Stem Cell Markers: Classification and Their Significance in Cancer Stem Cells. In: Bioengineering and Cancer Stem Cell Concept. Springer, Cham. https://doi.org/10.1007/978-3-319-25670-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25670-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25668-9

  • Online ISBN: 978-3-319-25670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics