Skip to main content

Appraising Between-Study Homogeneity, Small-Study Effects, Moderators, and Confounders

  • Chapter
  • First Online:
Umbrella Reviews

Abstract

Meta-analysis is the statistical synthesis of results from two or more clinical studies that address the same issue and compare two different interventions. Although the combination of results of several studies in a meta-analysis can increase power and improve precision, caution is needed in the presence of between-study heterogeneity and selection bias. These two factors can importantly impact meta-analysis conclusions and hence influence decision-making. Several methods have been developed to appraise the between-study variation and the tendency of small studies to yield larger intervention effects compared to larger studies. This chapter presents an overall review of methods presented in the meta-analysis literature along with their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sterne JA, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol. 2000;53(11):1119–29.

    Article  CAS  PubMed  Google Scholar 

  2. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Random-effects model. Introduction to meta-analysis [Internet]. John Wiley & Sons, Ltd; 2009 [cited 2014]. p. 69–75. Available from: http://onlinelibrary.wiley.com/doi/10.1002/9780470743386.ch12/summary.

  3. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions [Internet]. Version 5.1.0. The Cochrane Collaboration; 2011. Available from: www.cochrane-handbook.org.

  4. Rücker G, Carpenter JR, Schwarzer G. Detecting and adjusting for small-study effects in meta-analysis. Biom J. 2011;53(2):351–68.

    Article  PubMed  Google Scholar 

  5. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, Kuss O, Higgins JPT, Langan D, Salanti G. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Method. 2015. doi: 10.1002/jrsm.1164.

    Google Scholar 

  6. Mavridis D, Salanti G. Exploring and accounting for publication bias in mental health: a brief overview of methods. Evid Based Ment Health. 2014;17(1):11–5.

    Article  PubMed  Google Scholar 

  7. Anzures-Cabrera J, Higgins JPT. Graphical displays for meta-analysis: an overview with suggestions for practice. Res Synth Methods. 2010;1(1):66–80.

    Article  PubMed  Google Scholar 

  8. Bax L. MIX 2.0 – professional software for meta-analysis in Excel [Internet]. BiostatXL; 2011. Available from: http://www.meta-analysis-made-easy.com.

  9. Tricco AC, Alateeq A, Tashkandi M, Mamdani M, Al-Omran M, Straus SE. Histamine H2 receptor antagonists for decreasing gastrointestinal harms in adults using acetylsalicylic acid: systematic review and meta-analysis. Open Med. 2012;6(3):e109–17.

    PubMed Central  PubMed  Google Scholar 

  10. Egger M, Smith GD, Phillips AN. Meta-analysis: principles and procedures. BMJ. 1997;315(7121):1533–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ried K. Interpreting and understanding meta-analysis graphs – a practical guide. Aust Fam Physician. 2006;35(8):635–8.

    PubMed  Google Scholar 

  12. Moja L, Moschetti I, Liberati A, Gensini GF, Gusinu R. Understanding systematic reviews: the meta-analysis graph (also called “forest plot”). Intern Emerg Med. 2007;2(2):140–2.

    Article  CAS  PubMed  Google Scholar 

  13. DuMouchel W. Predictive cross-validation of Bayesian meta-analyses. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM, editors. Bayesian statistics 5. Oxford: Oxford University Press; 1996. p. 107–27.

    Google Scholar 

  14. Thompson SG. Controversies in meta-analysis: the case of the trials of serum cholesterol reduction. Stat Methods Med Res. 1993;2(2):173–92.

    Article  CAS  PubMed  Google Scholar 

  15. Galbraith RF. Some applications of radial plots. J Am Stat Assoc. 1994;89(428):1232–42.

    Article  Google Scholar 

  16. Galbraith RF. A note on graphical presentation of estimated odds ratios from several clinical trials. Stat Med. 1988;7(8):889–94.

    Article  CAS  PubMed  Google Scholar 

  17. Song F. Exploring heterogeneity in meta-analysis: is the L’Abbé plot useful? J Clin Epidemiol. 1999;52(8):725–30.

    Article  CAS  PubMed  Google Scholar 

  18. L’Abbé KA, Detsky AS, O’Rourke K. Meta-analysis in clinical research. Ann Intern Med. 1987;107(2):224–33.

    Article  PubMed  Google Scholar 

  19. Baujat B, Mahé C, Pignon J-P, Hill C. A graphical method for exploring heterogeneity in meta-analyses: application to a meta-analysis of 65 trials. Stat Med. 2002;21(18):2641–52.

    Article  PubMed  Google Scholar 

  20. Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with random effects. Stat Med. 1996;15(6):619–29.

    Article  CAS  PubMed  Google Scholar 

  21. Viechtbauer W. Hypothesis tests for population heterogeneity in meta-analysis. Br J Math Stat Psychol. 2007;60(1):29–60.

    Article  PubMed  Google Scholar 

  22. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10(1):101–29.

    Article  Google Scholar 

  23. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28(2):105–14.

    Article  PubMed  Google Scholar 

  24. Jackson D. Confidence intervals for the between-study variance in random effects meta-analysis using generalised Cochran heterogeneity statistics. Res Synth Methods. 2013;4(3):220–9.

    PubMed  Google Scholar 

  25. Biggerstaff BJ, Tweedie RL. Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Stat Med. 1997;16(7):753–68.

    Article  CAS  PubMed  Google Scholar 

  26. Biggerstaff BJ, Jackson D. The exact distribution of Cochran’s heterogeneity statistic in one-way random effects meta-analysis. Stat Med. 2008;27(29):6093–110.

    Article  PubMed  Google Scholar 

  27. Hardy RJ, Thompson SG. Detecting and describing heterogeneity in meta-analysis. Stat Med. 1998;17(8):841–56.

    Article  CAS  PubMed  Google Scholar 

  28. Fleiss JL. Analysis of data from multiclinic trials. Control Clin Trials. 1986;7(4):267–75.

    Article  CAS  PubMed  Google Scholar 

  29. Petitti DB. Approaches to heterogeneity in meta-analysis. Stat Med. 2001;20(23):3625–33.

    Article  CAS  PubMed  Google Scholar 

  30. Barbui C, Hotopf M, Freemantle N, Boynton J, Churchill R, Eccles MP, et al. WITHDRAWN: treatment discontinuation with selective serotonin reuptake inhibitors (SSRIs) versus tricyclic antidepressants (TCAs). Cochrane Database Syst Rev. 2006;3:CD002791.

    Google Scholar 

  31. Rücker G, Schwarzer G, Carpenter JR, Binder H, Schumacher M. Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis. Biostatistics. 2011;12(1):122–42.

    Article  PubMed  Google Scholar 

  32. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    Article  PubMed  Google Scholar 

  33. Wetterslev J, Thorlund K, Brok J, Gluud C. Estimating required information size by quantifying diversity in random-effects model meta-analyses. BMC Med Res Methodol. 2009;9(1):86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193–206.

    Article  PubMed  Google Scholar 

  35. Zou GY. On the estimation of additive interaction by use of the four-by-two table and beyond. Am J Epidemiol. 2008;168(2):212–24.

    Article  PubMed  Google Scholar 

  36. Donner A, Zou GY. Closed-form confidence intervals for functions of the normal mean and standard deviation. Stat Methods Med Res. 2012;21(4):347–59.

    Article  PubMed  Google Scholar 

  37. Bowden J, Tierney JF, Copas AJ, Burdett S. Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics. BMC Med Res Methodol. 2011;11(1):41.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Birge RT. The calculation of errors by the method of least squares. Phys Rev. 1932;40(2):207–27.

    Article  Google Scholar 

  39. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  40. Mittlböck M, Heinzl H. A simulation study comparing properties of heterogeneity measures in meta-analyses. Stat Med. 2006;25(24):4321–33.

    Article  PubMed  Google Scholar 

  41. Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Methodol. 2008;8:79.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Thorlund K, Imberger G, Johnston BC, Walsh M, Awad T, Thabane L, et al. Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses. PLoS One. 2012;7(7):e39471.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Paule RC, Mandel J. Consensus values and weighting factors [Internet]. National Institute of Standards and Technology; 1982 [cited 25 Mar 2014]. Available from: http://archive.org/details/jresv87n5p377_A1b.

  44. The Nordic Cochrane Centre. Review manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Cochrane Collaboration; 2014.

    Google Scholar 

  45. Cornell JE, Mulrow CD, Localio R, Stack CB, Meibohm AR, Guallar E, et al. Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med. 2014;160(4):267–70.

    Article  PubMed  Google Scholar 

  46. Raudenbush SW. Analyzing effect sizes: Random-effects models. In: Cooper H, Hedges LV, Valentine JC, (Eds.). The handbook of research synthesis and meta-analysis (2nd ed). New York: Russell Sage Foundation; 2009.

    Google Scholar 

  47. Sidik K, Jonkman JN. Simple heterogeneity variance estimation for meta-analysis. J R Stat Soc Ser C Appl Stat. 2005;54(2):367–84.

    Article  Google Scholar 

  48. Rukhin AL. Estimating heterogeneity variance in meta-analysis. J R Stat Soc Ser B Stat Methodol. 2013;75(3):451–69.

    Article  Google Scholar 

  49. Smith TC, Spiegelhalter DJ, Thomas A. Bayesian approaches to random-effects meta-analysis: a comparative study. Stat Med. 1995;14(24):2685–99.

    Article  CAS  PubMed  Google Scholar 

  50. Kontopantelis E, Springate DA, Reeves D. A re-analysis of the Cochrane Library data: the dangers of unobserved heterogeneity in meta-analyses. PLoS One. 2013;8(7):e69930.

    Google Scholar 

  51. Chung Y, Rabe-Hesketh S, Choi I-H. Avoiding zero between-study variance estimates in random-effects meta-analysis. Stat Med. 2013;32(23):4071–89.

    Google Scholar 

  52. Sidik K, Jonkman JN. A comparison of heterogeneity variance estimators in combining results of studies. Stat Med. 2007;26(9):1964–81.

    Article  PubMed  Google Scholar 

  53. Viechtbauer W. Confidence intervals for the amount of heterogeneity in meta-analysis. Stat Med. 2007;26(1):37–52.

    Article  PubMed  Google Scholar 

  54. Novianti PW, Roes KCB, van der Tweel I. Estimation of between-trial variance in sequential meta-analyses: a simulation study. Contemp Clin Trials. 2014;37(1):129–38.

    Article  PubMed  Google Scholar 

  55. Sidik K, Jonkman JN. A note on variance estimation in random effects meta-regression. J Biopharm Stat. 2005;15(5):823–38.

    Article  PubMed  Google Scholar 

  56. Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Edu Behav Stat. 2005;30(3):261–93.

    Article  Google Scholar 

  57. Jackson D, Bowden J, Baker R. How does the DerSimonian and Laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts? J Stat Plan Inference. 2010;140(4):961–70.

    Article  Google Scholar 

  58. Rukhin AL, Biggerstaff BJ, Vangel MG. Restricted maximum likelihood estimation of a common mean and the Mandel–Paule algorithm. J Stat Plan Inference. 2000;83(2):319–30.

    Article  Google Scholar 

  59. Panityakul T, Bumrungsup C, Knapp G. On estimating residual heterogeneity in random-effects meta-regression: a comparative study. J Stat Theory Appl. 2013;12(3):253.

    Article  Google Scholar 

  60. Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med. 1999;18(20):2693–708.

    Article  CAS  PubMed  Google Scholar 

  61. William H, Swallow JFM. Monte Carlo comparison of ANOVA, MIVQUE, REML, and ML estimators of variance components. Technometrics. 1984;26(1):47–57.

    Article  Google Scholar 

  62. Goldstein H, Rasbash J. Improved approximations for multilevel models with binary responses. J R Stat Soc Ser A Stat Soc. 1996;159(3):505.

    Article  Google Scholar 

  63. Thorlund K, Wetterslev J, Awad T, Thabane L, Gluud C. Comparison of statistical inferences from the DerSimonian–Laird and alternative random-effects model meta-analyses – an empirical assessment of 920 Cochrane primary outcome meta-analyses. Res Synth Methods. 2011;2(4):238–53.

    Article  PubMed  Google Scholar 

  64. Morris CN. Parametric empirical Bayes inference: theory and applications. J Am Stat Assoc. 1983;78(381):47.

    Article  Google Scholar 

  65. Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR. How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Stat Med. 2005;24(15):2401–28.

    Article  PubMed  Google Scholar 

  66. Senn S. Trying to be precise about vagueness. Stat Med. 2007;26(7):1417–30.

    Article  PubMed  Google Scholar 

  67. Chung Y, Rabe-Hesketh S, Dorie V, Gelman A, Liu J. A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika. 2013;78(4):685–709.

    Article  PubMed  Google Scholar 

  68. Gelman A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 2006;1(3):515–34.

    Google Scholar 

  69. Rhodes KM, Turner RM, Higgins JPT. Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data. J Clin Epidemiol. 2015;68(1):52–60.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JPT. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol. 2012;41(3):818–27. doi: 10.1093/ije/dys041.

    Google Scholar 

  71. Pullenayegum EM. An informed reference prior for between-study heterogeneity in meta-analyses of binary outcomes. Stat Med. 2011;30(26):3082–94.

    Article  PubMed  Google Scholar 

  72. Bailey KR. Inter-study differences: how should they influence the interpretation and analysis of results? Stat Med. 1987;6(3):351–60.

    Article  CAS  PubMed  Google Scholar 

  73. Friedrich JO, Adhikari NKJ, Beyene J. Ratio of means for analyzing continuous outcomes in meta-analysis performed as well as mean difference methods. J Clin Epidemiol. 2011;64(5):556–64.

    Article  PubMed  Google Scholar 

  74. Engels EA, Schmid CH, Terrin N, Olkin I, Lau J. Heterogeneity and statistical significance in meta-analysis: an empirical study of 125 meta-analyses. Stat Med. 2000;19(13):1707–28.

    Article  CAS  PubMed  Google Scholar 

  75. Deeks JJ. Issues in the selection of a summary statistic for meta-analysis of clinical trials with binary outcomes. Stat Med. 2002;21(11):1575–600.

    Article  PubMed  Google Scholar 

  76. Lambert PC, Sutton AJ, Abrams KR, Jones DR. A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis. J Clin Epidemiol. 2002;55(1):86–94.

    Article  CAS  PubMed  Google Scholar 

  77. Smith CT, Williamson PR, Marson AG. Investigating heterogeneity in an individual patient data meta-analysis of time to event outcomes. Stat Med. 2005;24(9):1307–19.

    Article  PubMed  Google Scholar 

  78. Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011;342:d549.

    Article  PubMed  Google Scholar 

  79. Guddat C, Grouven U, Bender R, Skipka G. A note on the graphical presentation of prediction intervals in random-effects meta-analyses. Syst Rev. 2012;1:34.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 2009;172(1):137–59.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002.

    Article  PubMed  Google Scholar 

  82. Light RJ, Pillemer DB. Summing up: the science of reviewing research. Highlightingth ed. Cambridge: Harvard University Press; 1984. 191 p.

    Google Scholar 

  83. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Sterne JAC, Egger M, Smith GD. Investigating and dealing with publication and other biases in meta-analysis. BMJ. 2001;323(7304):101–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Ioannidis JPA, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ. 2007;176(8):1091–6.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Terrin N, Schmid CH, Lau J. In an empirical evaluation of the funnel plot, researchers could not visually identify publication bias. J Clin Epidemiol. 2005;58(9):894–901.

    Article  PubMed  Google Scholar 

  87. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008;61(10):991–6.

    Article  PubMed  Google Scholar 

  88. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    Article  CAS  PubMed  Google Scholar 

  89. Cooper H, Hedges LV, editors. The handbook of research synthesis. 1st ed. New York: Russell Sage; 1994. 573 p.

    Google Scholar 

  90. Gjerdevik M, Heuch I. Improving the error rates of the Begg and Mazumdar test for publication bias in fixed effects meta-analysis. BMC Med Res Methodol. 2014;14:109.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Tang J-L, Liu JL. Misleading funnel plot for detection of bias in meta-analysis. J Clin Epidemiol. 2000;53(5):477–84.

    Article  CAS  PubMed  Google Scholar 

  92. Schwarzer G, Antes G, Schumacher M. A test for publication bias in meta-analysis with sparse binary data. Stat Med. 2007;26(4):721–33.

    Article  PubMed  Google Scholar 

  93. Macaskill P, Walter SD, Irwig L. A comparison of methods to detect publication bias in meta-analysis. Stat Med. 2001;20(4):641–54.

    Article  CAS  PubMed  Google Scholar 

  94. Harbord RM, Egger M, Sterne JAC. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006;25(20):3443–57.

    Article  PubMed  Google Scholar 

  95. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA. 2006;295(6):676–80.

    Article  CAS  PubMed  Google Scholar 

  96. Rücker G, Schwarzer G, Carpenter J. Arcsine test for publication bias in meta-analyses with binary outcomes. Stat Med. 2008;27(5):746–63.

    Article  PubMed  Google Scholar 

  97. Duval S, Tweedie R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J Am Stat Assoc. 2000;95(449):89–98.

    Google Scholar 

  98. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63.

    Article  CAS  PubMed  Google Scholar 

  99. Terrin N, Schmid CH, Lau J, Olkin I. Adjusting for publication bias in the presence of heterogeneity. Stat Med. 2003;22(13):2113–26.

    Article  PubMed  Google Scholar 

  100. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. Stat Med. 2007;26(25):4544–62.

    Article  PubMed  Google Scholar 

  101. Copas J. What works?: selectivity models and meta-analysis. J R Stat Soc Ser A Stat Soc. 1999;162(1):95–109.

    Article  Google Scholar 

  102. Mavridis D, Sutton A, Cipriani A, Salanti G. A fully Bayesian application of the Copas selection model for publication bias extended to network meta-analysis. Stat Med. 2013;32(1):51–66.

    Article  PubMed  Google Scholar 

  103. Copas JB, Shi JQ. A sensitivity analysis for publication bias in systematic reviews. Stat Methods Med Res. 2001;10(4):251–65.

    Article  CAS  PubMed  Google Scholar 

  104. Copas J, Shi JQ. Meta-analysis, funnel plots and sensitivity analysis. Biostat Oxf Engl. 2000;1(3):247–62.

    Article  CAS  Google Scholar 

  105. Schwarzer G, Carpenter J, Rücker G. Empirical evaluation suggests Copas selection model preferable to trim-and-fill method for selection bias in meta-analysis. J Clin Epidemiol. 2010;63(3):282–8.

    Article  PubMed  Google Scholar 

  106. Carpenter JR, Schwarzer G, Rücker G, Künstler R. Empirical evaluation showed that the Copas selection model provided a useful summary in 80% of meta-analyses. J Clin Epidemiol. 2009;62(6):624–31.e4.

    Article  PubMed  Google Scholar 

  107. Stanley TD. Meta-regression methods for detecting and estimating empirical effects in the presence of publication selection. Oxf Bull Econ Stat. 2008;70(1):103–27.

    Google Scholar 

  108. Copas JB, Malley PF. A robust P-value for treatment effect in meta-analysis with publication bias. Stat Med. 2008;27(21):4267–78.

    Article  PubMed  Google Scholar 

  109. Moreno SG, Sutton AJ, Ades AE, Stanley TD, Abrams KR, Peters JL, et al. Assessment of regression-based methods to adjust for publication bias through a comprehensive simulation study. BMC Med Res Methodol. 2009;9(1):2.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Moreno SG, Sutton AJ, Ades AE, Cooper NJ, Abrams KR. Adjusting for publication biases across similar interventions performed well when compared with gold standard data. J Clin Epidemiol. 2011;64(11):1230–41.

    Article  PubMed  Google Scholar 

  111. Schmidt FL, Oh I-S, Hayes TL. Fixed- versus random-effects models in meta-analysis: model properties and an empirical comparison of differences in results. Br J Math Stat Psychol. 2009;62(1):97–128.

    Article  PubMed  Google Scholar 

  112. Brockwell SE, Gordon IR. A comparison of statistical methods for meta-analysis. Stat Med. 2001;20(6):825–40.

    Article  CAS  PubMed  Google Scholar 

  113. Searching grey literature: grey matters [Internet]. [cited 29 Mar 2015]. Available from: http://www.nccmt.ca/registry/view/eng/130.html.

Download references

Acknowledgements

AAV is funded by the CIHR Banting Postdoctoral Fellowship Program.

We would also like to thank Dr. Sharon E. Straus for her comments on a previous draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Areti Angeliki Veroniki PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Veroniki, A.A., Huedo-Medina, T.B., Fountoulakis, K.N. (2016). Appraising Between-Study Homogeneity, Small-Study Effects, Moderators, and Confounders. In: Biondi-Zoccai, G. (eds) Umbrella Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-25655-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25655-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25653-5

  • Online ISBN: 978-3-319-25655-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics