Skip to main content

Radiocarbon in the Atmosphere

  • Chapter
  • First Online:
Radiocarbon and Climate Change

Abstract

This chapter examines the controls on radiocarbon (14C) content of CO2 in the atmosphere over time. It discusses atmospheric observations and their interpretation using models of atmospheric transport, which describe the physical mixing of the atmosphere. This spans the simplest conceptual model of addition of a gas into a single well-mixed box of air, to multi-box models with three-dimensional global or regional atmospheric transport models. This format is applied to atmospheric history for five different time periods when different factors dominated atmospheric 14C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boden, T.A., G. Marland, and R.J. Andres. 2012. Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.

    Google Scholar 

  • Bozhinova, D., M. Combe, S.W.L. Palstra, H.A.J. Meijer, M.C. Krol, and W. Peters. 2013. The importance of crop growth modeling to interpret the 14CO2 signature of annual plants. Global Biogeochemical Cycles 27: 792–803.

    Article  Google Scholar 

  • Braziunas, T.F., I.Y. Fung, and M. Stuiver. 1995. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Global Biogeochemical Cycles 9: 565–584.

    Article  Google Scholar 

  • Broecker, W.S., T.-H. Peng, and R. Engh. 1980. Modeling the carbon system. Radiocarbon 22: 565–598.

    Google Scholar 

  • Broecker, W.S., T.-H. Peng, H. Ostlund, and M. Stuiver. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research C4: 6953–6970.

    Article  Google Scholar 

  • Bruns, M., I. Levin, K.O. Munnich, M.W. Hubberten, and S. Fillipakis. 1980. Regional sources of volcanic carbon dioxide and their influence on C14 content of present-day plant material. Radiocarbon 22: 532–536.

    Google Scholar 

  • Caldeira, K., G.H. Rau, and P.B. Duffy. 1998. Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content. Geophysical Research Letters 25: 3811–3814.

    Article  Google Scholar 

  • Ciais, P., C.L. Sabine, G. Bala, L. Bopp, V. Brovkin, J.G. Canadell, A. Chabbra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quere, R. Mymeni, S. Piao, and P. Thornton. 2013. Carbon and other biogeochemical cycles. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Currie, K.I., G. Brailsford, S. Nichol, A. J. Gomez, R.J. Sparks, K.R. Lassey, and K. Riedel. 2011. Tropospheric 14CO2 at Wellington, New Zealand: the world’s longest record. Biogeochemistry 104: 5–22. doi:10.1007/s10533-009-9352-6

    Google Scholar 

  • De Jong, A.F., and W.G. Mook. 1982. An anomalous Suess effect above Europe. Nature 298: 641–644.

    Article  Google Scholar 

  • Denning, A.S., M. Holzer, K.R. Gurney, M. Heimann, R.M. Law, P.J. Rayner, I.Y. Fung, S. Fan, S. Taguchi, P. Friedlingstein, Y. Balkanski, J. Taylor, M. Maiss, and I. Levin. 1999. Three-dimensional transport and concentration of SF6 a model intercomparison study (TransCom 2). Tellus 51B: 266–297.

    Article  Google Scholar 

  • Djuricin, S., D.E. Pataki, and X. Xu. 2010. A comparison of tracer methods for quantifying CO2 sources in an urban region. Journal of Geophysical Research 115.

    Google Scholar 

  • Friedrich, M., S. Remmele, B. Kromer, J. Hofmann, M. Spurk, K.F. Kaiser, C. Orcel, and M. Küppers. 2004. The 12,460-year hohenheim oak and pine tree-ring chronology from Central Europe: A unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46: 1111–1122.

    Google Scholar 

  • Frost, T., and R.C. Upstill-Goddard. 1999. Air-sea gas exchange into the millennium: Progress and uncertainties. Oceanography and Marine Biology 37(37): 1–45.

    Google Scholar 

  • Galli, I., S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi. 2011. Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection. Physical Review Letters 107: 270802.

    Google Scholar 

  • Graven, H.D., and N. Gruber. 2011. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: Potential impact on the estimation of fossil fuel-derived CO2. Atmospheric Chemistry and Physics 11: 12339–12349.

    Article  Google Scholar 

  • Graven, H.D., T.P. Guilderson, and R.F. Keeling. 2007. Methods for high-precision 14C AMS measurement of atmospheric CO2 at LLNL. Radiocarbon 49: 349–356.

    Google Scholar 

  • Graven, H.D., B.B. Stephens, T.P. Guilderson, T.L. Campos, D.S. Schimel, J.E. Campbell, and R.F. Keeling. 2009. Vertical profiles of biospheric and fossil fuel-derived CO2 and fossil fuel CO2:CO ratios from airborne measurements of Δ14C, CO2 and CO above Colorado, USA. Tellus B 61: 536–546.

    Article  Google Scholar 

  • Graven, H.D., N. Gruber, R. Key, S. Khatiwala, and X. Giraud. 2012a. Changing controls on oceanic radiocarbon: new insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. Journal of Geophysical Research 117.

    Google Scholar 

  • Graven, H.D., T.P. Guilderson, and R.F. Keeling. 2012b. Observations of radiocarbon in CO2 at La Jolla, California, USA 1992–2007: analysis of the long-term trend. Journal of Geophysical Research 117.

    Google Scholar 

  • Graven, H.D., T.P. Guilderson, and R.F. Keeling. 2012c. Observations of radiocarbon in CO2 at seven global sampling sites in the scripps flask network: Analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research 117.

    Google Scholar 

  • Graven, H.D., X. Xu, T. Guilderson, R.F. Keeling, S.E. Trumbore, and S. Tyler. 2013. Comparison of independent ∆14CO2 records at point barrow, Alaska. Radiocarbon 55: 1541–1545.

    Article  Google Scholar 

  • Gregg, J.S., R.J. Andres, and G. Marland. 2008. China: Emissions Pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophysical Research Letters 35.

    Google Scholar 

  • Gurney, K.R., R.M. Law, A.S. Denning, P.J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y.-H. Chen, P. Ciais, S. Fan, I.Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, T. Maki, S. Maksyutov, K.A. Masarie, P. Peylin, M. Prather, B.C. Pak, J. Randerson, J.L. Sarmiento, S. Taguchi, T. Takahashi, and C.-W. Yuen. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415: 626–630.

    Article  Google Scholar 

  • Gurney, K.R., D.L. Mendoza, Y. Zhou, M.L. Fischer, C.C. Miller, S. Geethakumar, and S. de la Rue du Can. 2009. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environmental Science and Technology 43: 5535–5541.

    Article  Google Scholar 

  • Heimann, M., and E. Maier-Reimer. 1996. On the relations between the oceanic uptake of CO2 and its carbon isotopes. Global Biogeochemical Cycles 10: 89–110.

    Article  Google Scholar 

  • Hesshaimer, V., and I. Levin. 2000. Revision of the stratospheric bomb 14CO2 inventory. Journal of Geophysical Research 105: 11641–11658.

    Article  Google Scholar 

  • Hesshaimer, V., M. Heimann, and I. Levin. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 201–203.

    Google Scholar 

  • Hogg, A., F. McCormac, T. Higham, P. Reimer, M. Baillie, and J. Palmer. 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: A.D. 1850–1950. Radiocarbon 44: 633–640.

    Google Scholar 

  • Hogg, A.G., C. Bronk Ramsey, C. Turney, and J. Palmer. 2009a. Bayesian evaluation of the Southern Hemisphere radiocarbon offset during the holocene. Radiocarbon 51: 1165–1176.

    Google Scholar 

  • Hogg, A.G., J. Palmer, G. Boswijk, P. Reimer, and D. Brown. 2009b. Investigating the interhemispheric 14C offset in the 1st millennium A.D. and assessment of laboratory bias and calibration errors. Radiocarbon 51: 1177–1186.

    Google Scholar 

  • Holton, J.R., P.H. Haynes, M.E. McIntyre, A.R. Douglass, R.B. Rood, and L. Pfister. 1995. Stratosphere-troposphere exchange. Reviews of Geophysics 33: 403–439.

    Article  Google Scholar 

  • Houghton, R.A. 2008. Carbon flux to the atmosphere from land-use changes: 1850–2005. TRENDS: A compendium of data on global change. Carbon dioxide information analysis center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, USA.

    Google Scholar 

  • Hsueh, D.Y., N.Y. Krakauer, J.T. Randerson, X. Xu, S.E. Trumbore, and J.R. Southon. 2007. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophysical Research Letters 34: L02816.

    Article  Google Scholar 

  • Hua, Q., and M. Barbetti. 2004. Review of tropospheric bomb C-14 data for carbon cycle modeling and age calibration purposes. Radiocarbon 46: 1273–1298.

    Google Scholar 

  • Hua, Q., and M. Barbetti. 2007. Influence of atmospheric circulation on regional (CO2)-14C differences. Journal of Geophysical Research-Atmospheres 112.

    Google Scholar 

  • Hua, Q., M. Barbetti, U. Zoppi, D. Fink, M. Watanasak, and G. Jacobsen. 2004. Radiocarbon in tropical tree rings during the little ice age. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 223: 489–494.

    Article  Google Scholar 

  • Hua, Q., M. Barbetti, D. Fink, K.F. Kaiser, M. Friedrich, B. Kromer, V.A. Levchenko, U. Zoppi, A.M. Smith, and F. Bertuch. 2009. Atmospheric C-14 variations derived from tree rings during the early younger dryas. Quaternary Science Reviews 28: 2982–2990.

    Article  Google Scholar 

  • Hua, Q., M. Barbetti, and A.Z. Rakowski. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55: 2059–2072.

    Article  Google Scholar 

  • Hughen, K., S. Lehman, J. Southon, J. Overpeck, O. Marchal, C. Herring, and J. Turnbull. 2004. C-14 activity and global carbon cycle changes over the past 50,000 years. Science 303: 202–207.

    Article  Google Scholar 

  • Jacob, D.J. 1999. Introduction to atmospheric chemistry. Princeton, NJ, USA: Princeton University Press.

    Google Scholar 

  • Johnston, C.A. 1994. Ecological engineering of wetlands by beavers. In Global Wetlands: Old World and New, ed. W.J. Mitsch, 379–384. Amsterdam: Elsevier.

    Google Scholar 

  • Jones, C., E. Robertson, V. Arora, P. Friedlingstein, E. Shevliakova, L. Bopp, V. Brovkin, T. Hajima, E. Kato, M. Kawamiya, S. Liddicoat, K. Lindsay, C.H. Reick, C. Roelandt, J. Segschneider, and J. Tjiputra. 2013. Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. Journal of Climate, 26: 4398–4413.

    Article  Google Scholar 

  • Jöckel, P., M.G. Lawrence, and C.A.M. Brenninkmeijer. 1999. Simulations of cosmogenic 14CO using the three-dimensional atmospheric transport model MATCH: Effects of 14C production distribution and the solar cycle. Journal of Geophysical Research, 104(D9): 11733–11743.

    Google Scholar 

  • Jöckel, P., and C.A.M. Brenninkmeijer. 2002. the seasonal cycle of cosmogenic 14CO at the surface level: A solar cycle adjusted, zonal-average climatology based on observations. Journal of Geophysical Research 107: 4656.

    Article  Google Scholar 

  • Keeling, C.D., and T. Whorf. 2005. Atmospheric CO2 records from sites in the SIO air sampling network. Trends: A compendium of data of global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak RIdge, Tenn., USA.

    Google Scholar 

  • Key, R.M., A. Kozyr, C.L. Sabine, K. Lee, R. Wanninkhof, J.L. Bullister, R.A. Feely, F.J. Millero, C. Mordy, and T.H. Peng. 2004. A global ocean carbon climatology: results from global data analysis project (GLODAP). Global Biogeochemical Cycles 18(4). doi:10.1029/2004gb002247(4).

  • Kirschke, S., P. Bousquet1, P. Ciais, M. Saunois, J.G. Canadell, E.J. Dlugokencky, P. Bergamaschi, D. Bergmann, D.R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F.D.R. Chevallier, L. Feng, A. Fraser, M. Heimann, E.L. Hodson, A. Houweling, B.A. Josse, P.J. Fraser, P.B. Krummel, J.-F.O. Lamarque, R.L. Langenfelds, C.L. Quéré, V. Naik, S. O’Doherty, P.I. Palmer, I. Pison, D. Plummer, B. Poulter, R.G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D.T. Shindell, I.J. Simpson, R. Spahni, L.P. Steele, S.A. Strode, K. Sudo, S. Szopa, G. R.V.D. Werf, A. Voulgarakis, M.V. Weele, R.F. Weiss, J.E. Williams, and G. Zeng. 2013. Three decades of global methane sources and sinks. Nature Geoscience 6: 813–823.

    Google Scholar 

  • Kitigawa, H., H. Mukai, Y. Nojiri, Y. Shibata, T. Kobayashi, and T. Nojiri. 2004. Seasonal and secular variations of atmospheric 14CO2 over the Western Pacific since 1994. Radiocarbon 46: 901–910.

    Google Scholar 

  • Kjellstrom, E., J. Feichter, and G. Hoffman. 2000. Transport of SF6 and (CO2)-C14 in the atmospheric general circulation model ECHAM4. Tellus Series B-Chemical and Physical Meteorology 52: 1–18.

    Article  Google Scholar 

  • Knox, F., and B. McFadgen. 2004. Radiocarbon/tree ring calibration, solar activity, and upwelling of ocean water. Radiocarbon 46: 987–995.

    Google Scholar 

  • Kohler, P., R. Muscheler, and H. Fischer. 2006. A model-based interpretation of low-frequency changes in the carbon cycle during the last 120,000 years and its implications for the reconstruction of atmospheric delta C-14. Geochemistry Geophysics Geosystems 7.

    Google Scholar 

  • Krakauer, N., J. Randerson, F. Primeau, N. Gruber, and D. Menemenlis. 2006. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity. Tellus Series B-Chemical and Physical Meteorology 58: 390–417.

    Article  Google Scholar 

  • Krol, M.C., and J. Lelieveld. 2003. Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)? Journal of Geophysical Research D108.

    Google Scholar 

  • Krol, M.C., J.F. Meirink, P. Bergamaschi, J.E. Mak, D. Lowe, P. Jockel, S. Houweling, and T. Rockmann. 2008. What can 14CO measurements tell us about OH? Atmospheric Chemistry and Physics 8: 5033–5044.

    Article  Google Scholar 

  • Kuc, T., K. Rozanski, M. Zimnoch, J. Necki, L. Chmura, and D. Jelen. 2007. Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in central europe: long-term changes of regional anthropogenic fossil CO2 emissions. Radiocarbon 49: 807–816.

    Google Scholar 

  • Lal, D. 1988. Theoretically expected variations in the terrestrial cosmic-ray production rates of isotopes. In: Proceedings of the International school of Physics, Solar-Terrestrial Relationships and the Earth Environment in the Last Millennia, pp. 215–233.

    Google Scholar 

  • Lal, D., and Rama. 1966. Characteristics of global tropospheric mixing based on man-made C14 H3 and Sr90. Journal of Geophysical Research 71: 2865.

    Article  Google Scholar 

  • Land, C., J. Feichter, and R. Sausen. 2002. Impact of vertical resolution on the transport of passive tracers in the ECHAM4 model. Tellus B 54: 344–360.

    Article  Google Scholar 

  • Lassey, K.R., D.C. Lowe, and A.M. Smith. 2007. The atmospheric cycling of radiomethane and the “fossil fraction” of the methane source. Atmospheric Chemistry and Physics 7: 2141–2149.

    Article  Google Scholar 

  • Le Quere, C., C. Rodenbeck, E.T. Buitenhuis, T.J. Conway, R. Langenfelds, A. Gomez, C. Labuschagne, M. Ramonet, T. Nakazawa, N. Metzl, N. Gillett, and M. Heimann. 2007. Saturation of the southern ocean CO2 sink due to recent climate change. Science 316: 1735–1738.

    Article  Google Scholar 

  • Lerman, J.C., W.G. Mook, and J.C. Vogel. 1970. C-14 in tree rings from different localities. Radiocarbon variations and absolute chronology. In: Proceedings of the Twelfth Nobel Symposium held at the Institute of Physics at Uppsala University. Wiley Interscience Division, New York.

    Google Scholar 

  • Levin, I., R. Boesinger, G. Bonani, R.J. Francey, B. Kromer, K.O. Muennich, M. Suter, N.B. A. Trivett, and W. Wolfli. 1992. Radiocarbon in atmospheric carbon dioxide and methane global distribution and trends. In: Taylor, R.E., A. Long and R. S. Kra eds. Radiocarbon After Four Decades: An Interdisciplinary Perspective; Meeting, Lake Arrowhead, California, USA, 4–8 June 1990. Xviii + 596 p. New York, USA; Berlin, Germany: Springer. Illus: 503–518.

    Google Scholar 

  • Levin, I., and V. Hesshaimer. 2000. Radiocarbon: A unique tracer of global carbon cycle dynamics. Radiocarbon 42: 69–80.

    Google Scholar 

  • Levin, I., and U. Karstens. 2007. Inferring high-resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO observations. Tellus 59B: 245–250.

    Article  Google Scholar 

  • Levin, I., and B. Kromer. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46: 1261–1272.

    Google Scholar 

  • Levin, I., J. Schuchard, B. Kromer, and K.O. Munnich. 1989. The continental European Suess effect. Radiocarbon 31: 431–440.

    Google Scholar 

  • Levin, I., B. Kromer, M. Schmidt, and H. Sartorius. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30: 2194.

    Article  Google Scholar 

  • Levin, I., S. Hammer, B. Kromer, and F. Meinhardt. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391: 211–216.

    Article  Google Scholar 

  • Levin, I., T. Naegler, B. Kromer, M. Diehl, R.J. Francey, A.J. Gomez-Pelaez, L.P. Steele, D. Wagenbach, R. Weller, and D.E. Worthy. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B 62: 26–46.

    Article  Google Scholar 

  • Lovenduski, N.S., N. Gruber, S.C. Doney, and I.D. Lima. 2007. Enhanced CO2 outgassing in the southern ocean from a positive phase of the southern annular mode. Global Biogeochemical Cycles 21.

    Google Scholar 

  • Manning, M.R., D.C. Lowe, W.H. Melhuish, R.J. Sparks, G. Wallace, C.A.M. Brenninkmeijer, and R.C. McGill. 1990. The use of radiocarbon measurements in atmospheric sciences. Radiocarbon 32: 37–58.

    Google Scholar 

  • Manning, M.R., D.C. Lowe, R.C. Moss, G.E. Bodeker, and W. Allan. 2005. Short-term variations in the oxidizing power of the atmosphere. Nature 436: 1001–1004.

    Article  Google Scholar 

  • Marland, G. 2010. Accounting for carbon dioxide emissions from bioenergy systems. Journal of Industrial Ecology 14: 866–869.

    Article  Google Scholar 

  • Marland, G., T.A. Boden, and R.J. Andres. 2006. Global, regional and national CO2 emissions. Trends: A compedium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN.

    Google Scholar 

  • Masarik, J., and J. Beer. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the earth’s atmosphere. Journal of Geophysical Research-Atmospheres 104: 12099–12111.

    Article  Google Scholar 

  • Mazaud, A., C. Laj, E. Bard, M. Arnold, and E. Tric. 1991. Geomagnetic-field control of C-14 production over the Last 80 Ky—Implications for the radiocarbon timescale. Geophysical Research Letters 18: 1885–1888.

    Article  Google Scholar 

  • McCormac, F., A. Hogg, T. Higham, J. Lynch-Stieglitz, W. Broecker, M. Baillie, J. Palmer, L. Xiong, J. Pilcher, D. Brown, and S. Hoper. 1998. Temporal variation in the interhemispheric C-14 Offset. Geophysical Research Letters 25: 1321–1324.

    Article  Google Scholar 

  • McCormac, F., P. Reimer, A. Hogg, T. Higham, M. Baillie, J. Palmer, and M. Stuiver. 2002. Calibration of the radiocarbon time scale for the Southern Hemisphere: A.D. 1850–1950. Radiocarbon 44: 641–651.

    Google Scholar 

  • Meijer, H.A.J., H.M. Smid, E. Perez, and M.G. Keizer. 1996. Isotopic characterization of anthropogenic CO2 emissions using isotopic and radiocarbon analysis. Physical Chemistry of the Earth 21: 483–487.

    Article  Google Scholar 

  • Miller, J.B., C. Wolak, S.J. Lehman, C.E. Allison, H.D. Graven, T.P. Guilderson, R.F. Keeling, H.A.J. Meijer, T. Nakamura, T. Nakazawa, R.E. Neubert, A.M. Smith, J.R. Southon, and X. Xu. 2010. Preliminary results of from the first intercomparison of accelerator mass spectrometry atmospheric 14CO2 measurements. In: W. Brand, ed. 15th WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Measurement Techniques. World Meteorological Organization, Geneva.

    Google Scholar 

  • Meijer, H.A.J., M.H. Pertuisot, and J. van der Plicht. 2006. High-Accuracy C-14 measurements for atmospheric CO2 samples by AMS. Radiocarbon 48: 355–372.

    Google Scholar 

  • Miller, J.B., S.J. Lehman, S.A. Montzka, C. Sweeney, B.R. Miller, C. Wolak, E.J. Dlugokencky, J.R. Southon, J.C. Turnbull, and P.P. Tans. 2012. Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2. Journal of Geophysical Research 117.

    Google Scholar 

  • Miller, J.B., S. Lehmann, C. Wolak, J. Turnbull, G. Dunn, H. Graven, R. Keeling, H.A.J. Meijer, A.T. Aerts-Bijma, S.W.L. Palstra, A.M. Smith, C. Allison, J. Southon, X. Xu, T. Nakazawa, S. Aoki, T. Nakamura, T. Guilderson, B. LaFranchi, H. Mukai, Y. Terao, M. Uchida, and M. Kondo. 2013. Initial results of an intercomparison of AMS-based atmospheric 14CO2 measurements. Radiocarbon 55: 1475–1483.

    Article  Google Scholar 

  • Muscheler, R., J. Beer, G. Wagner, C. Laj, C. Kissel, G. Raisbeck, F. Yiou, and P. Kubik. 2004. Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth and Planetary Science Letters 219: 325–340.

    Article  Google Scholar 

  • Naegler, T., and I. Levin. 2006. Closing the global radiocarbon budget 1945–2005. Journal of Geophysical Research-Atmospheres 111.

    Google Scholar 

  • Naegler, T., and I. Levin. 2009a. Biosphere-atmosphere gross carbon exchange flux and the delta(CO2)-13C and Delta(CO2)-14C disequilibria constrained by the biospheric excess radiocarbon inventory. Journal of Geophysical Research-Atmospheres 114.

    Google Scholar 

  • Naegler, T., and I. Levin. 2009b. Observation-based global biospheric excess radiocarbon inventory 1963–2005. Journal of Geophysical Research 114.

    Google Scholar 

  • Nakamura, T., T. Nakazawa, H. Honda, H. Kitagawa, T. Machida, A. Ikeda, and E. Matsumoto. 1994. Seasonal variations in 14C concentrations of stratospheric CO2 measured with accelerator mass spectrometry. Nuclear Instruments and Methods B92: 413–416.

    Article  Google Scholar 

  • Nakamura, T., T. Nakazawa, N. Nakai, H. Kitigawa, H. Honda, T. Itoh, T. Machida, and E. Matsumoto. 1992. Measurement of 14C concentrations of stratospheric CO2 by accelerator mass spectrometry. Radiocarbon 34: 745–752.

    Google Scholar 

  • Nydal, R. 1963. Increase in radiocarbon from most recent series of thermonuclear tests. Nature 200: 212.

    Article  Google Scholar 

  • Nydal, R. 1968. Further investigation on transfer of radiocarbon in nature. Journal of Geophysical Research 73: 3617.

    Article  Google Scholar 

  • Nydal, R., and K. Lovseth. 1965. Distribution of Radiocarbon from Nuclear Tests. Nature 206: 1029.

    Article  Google Scholar 

  • Nydal, R., and K. Lovseth. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research-Oceans and Atmospheres 88: 3621–3642.

    Article  Google Scholar 

  • O’Brien, K. 1979. Secular variations in the production of cosmogenic isotopes in the earth’s atmosphere. Journal of Paleolimnology 84: 423.

    Google Scholar 

  • Oeschger, H., U. Siegenthaler, U. Schotterer, and A. Gugelmann. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus XXVII:168–192.

    Google Scholar 

  • Pacala, S.W., C. Breidenich, P.G. Brewer, I.Y. Fung, M.R. Gunson, G. Heddle, B.E. Law, G. Marland, K. Paustian, M. Prather, J.T. Randerson, P.P. Tans, and S.C. Wofsy. 2010. Verifying greenhouse gas emissions: methods to support international climate agreements. Committee on Methods for Estimating Greenhouse Gas Emissions: National Research Council.

    Google Scholar 

  • Palstra, S.W., U. Karstens, H.-J. Streurman, and H.A.J. Meijer. 2008. Wine ethanol 14C as a tracer for fossil fuel CO2 emissions in Europe: Measurements and model comparison. Journal of Geophysical Research 113.

    Google Scholar 

  • Pasquier-Cardin, A., P. Allard, T. Ferreira, E.C. Hatt, R. Coutinho, M. Fontugne, and M. Jaudon. 1999. Magma derived CO2 emissions recorded in 14C and 13C content of plants growing in furnas caldera, Azores. Journal of Volcanology and Geothermal Research 92: 195–207.

    Article  Google Scholar 

  • Peacock, S. 2004. Debate over the ocean bomb radiocarbon sink: Closing the gap. Global Biogeochemical Cycles 18.

    Google Scholar 

  • Petrenko, V.V., A.M. Smith, E.J. Brook, D.C. Lowe, K. Riedel, G. Brailsford, Q. Hua, H. Schaefer, N. Reeh, R.F. Weiss, D.M. Etheridge, and J.P. Severinghaus. 2009. 14CH4 measurements in greenland ice: Investigating the last glacial termination CH4 sources. Science 324: 506–508.

    Article  Google Scholar 

  • Peylin, P., S. Houweling, M. Krol, U. Karstens, C. Rodenbeck, C. Geels, A. Vermeulen, B. Badawy, C. Aulagnier, T. Pregger, F. Delage, G. Pieterse, P. Ciais, and M. Heimann. 2011. Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: Model intercomparison. Atmospheric Chemistry and Physics 11: 6607–6622.

    Article  Google Scholar 

  • Quay, P.D., J. Stutsman, D. Wilbur, A.K. Snover, E.J. Dlugokencky, and T.A. Brown. 1999. The isotopic composition of atmospheric methane. Global Biogeochemical Cycles 13: 445–461.

    Article  Google Scholar 

  • Rafter, T.A., and G.J. Fergusson. 1957. “Atom bomb effect”—Recent increase of carbon-14 content of the atmosphere and biosphere. Science 126: 557–558.

    Article  Google Scholar 

  • Randerson, J., I. Enting, E. Schuur, K. Caldeira, and I. Fung. 2002. Seasonal and Latitudinal variability of troposphere ∆(CO2)-14C: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochemical Cycles 16.

    Google Scholar 

  • Rayner, P.J., M.R. Raupach, M. Paget, P. Peylin, and E. Koffi. 2010. A new global gridded data set of CO2 emissions from fossil fuel combustion: Methodology and evaluation. Journal of Geophysical Research 115: D19306.

    Article  Google Scholar 

  • Reimer, P.J. 2013. IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years CAL BP. Radiocarbon 55: 1869–1887.

    Article  Google Scholar 

  • Reimer, P.J., M.G.L. Baillie, E. Bard, A. Bayliss, J.W. Beck, P.G. Blackwell, C.B. Ramsey, C.E. Buck, G.S. Burr, R.L. Edwards, M. Friedrich, P.M. Grootes, T.P. Guilderson, I. Hajdas, T.J. Heaton, A.G. Hogg, K.A. Hughen, K.F. Kaiser, B. Kromer, F.G. McCormac, S.W. Manning, R.W. Reimer, D.A. Richards, J.R. Southon, S. Talamo, C.S.M. Turney, J. van der Plicht, and C.E. Weyhenmeye. 2009. IntCal09 and marine09 radiocarbon age calibration curves, 0–50,000 years CAL BP. Radiocarbon 51: 1111–1150.

    Google Scholar 

  • Revelle, R., and H.E. Suess. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9: 18–27.

    Article  Google Scholar 

  • Riley, W.G., D.Y. Hsueh, J.T. Randerson, M.L. Fischer, J. Hatch, D.E. Pataki, W. Wang, and M.L. Goulden. 2008. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. Journal of Geophysical Research 113.

    Google Scholar 

  • Rodgers, K.B., S.E. Mikaloff-Fletcher, D. Bianchi, C. Beaulieu, E.D. Galbraith, A. Gnanadesikan, A.G. Hogg, D. Iudicone, B.R. Lintner, T. Naegler, P.J. Reimer, J.L. Sarmiento, and R.D. Slater. 2011. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of southern ocean winds. Climate of the Past 7: 1123–1138.

    Article  Google Scholar 

  • Saurer, M., P. Cherubini, G. Bonani, and R. Siegwolf. 2003. Tracing carbon uptake from a natural CO2 spring into tree rings: An isotope approach. Tree Physiology 23: 997–1004.

    Article  Google Scholar 

  • Schuur, E.A.G., et al. 2015. Climate change and the permafrost carbon feedback. Nature, 520(7546): 171–179, doi:10.1038/nature14338

    Google Scholar 

  • Scott, E.M., G.T. Cook, P. Naysmith, C. Bryant, and D. O’Donnell. 2007. A report on phase 1 of the 5th international radiocarbon intercomparison (VIRI). Radiocarbon 49: 409–426.

    Google Scholar 

  • Shibata, S., E. Kawano, and T. Nakabayashi. 2005. Atmospheric [14C]CO2 variations in Japan during 1982–1999 based on 14C measurements of rice grains. Applied Radiation and Isotopes 63: 285–290.

    Article  Google Scholar 

  • Slater, J., L.A. Currie, J. Dibb, and B.A.J. Benner. 2002. Distinguishing the relative contribution of fossil fuel and biomass combustion aerosols deposited at summit, greenland through isotopic and molecular characterization of insoluble carbon. Atmospheric Environment 36: 4463–4477.

    Article  Google Scholar 

  • Stephens, B., K. Gurney, P. Tans, C. Sweeney, W. Peters, L. Bruhwiler, P. Ciais, M. Ramonet, P. Bousquet, T. Nakazawa, S. Aoki, T. Machida, G. Inoue, N. Vinnichenko, J. Lloyd, A. Jordan, M. Heimann, O. Shibistova, R. Langenfelds, L. Steele, R. Francey, and A. Denning. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316: 1732–1735.

    Article  Google Scholar 

  • Stuiver, M., and T.F. Braziunas. 1993. Sun, ocean, climate and atmospheric 14CO2: An evaluation of causal and spectral relationships. Holocene 3: 289–305.

    Article  Google Scholar 

  • Stuiver, M., and T.F. Braziunas. 1998. Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25: 329–332.

    Article  Google Scholar 

  • Stuiver, M., and P.D. Quay. 1981. Atmospheric 14C changes resulting from fossil-fuel CO2 release and cosmic-ray flux variability. Earth and Planetary Science Letters 53: 349–362.

    Article  Google Scholar 

  • Suess, H.E. 1955. Radiocarbon concentration in modern wood. Science 122: 415–417.

    Article  Google Scholar 

  • Sweeney, C., E. Gloor, A. Jacobson, R. Key, G. McKinley, J. Sarmiento, and R. Wanninkhof. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles 21.

    Google Scholar 

  • Szidat, S., T.M. Jenk, H.-A. Synal, M. Kalberer, L. Wacker, I. Hajdas, A. Kasper-Giebl, and U. Baltensperger. 2006. Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in zurich as traced by 14C. Journal of Geophysical Research 111.

    Google Scholar 

  • Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, D.W. Chipman, B. Hales, G. Friederich, F. Chavez, C. Sabine, A. Watson, D.C.E. Bakker, U. Schuster, N. Metzl, H. Yoshikawa-Inoue, M. Ishii, T. Midorikawa, Y. Nojiri, A. Kortzinger, T. Steinhoff, M. Hoppema, J. Olafsson, T.S. Arnarson, B. Tilbrook, T. Johannessen, A. Olsen, R. Bellerby, C.S. Wong, B. Delille, N.R. Bates, and H.J.W. de Baar. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part I-Oceanographic Research Papers 56: 554.

    Google Scholar 

  • Tans, P.P., A.F. De Jong, and W.G. Mook. 1979. Natural atmospheric 14C variation and the Suess effect. Nature 280: 826–828.

    Article  Google Scholar 

  • Telegadas, K. 1971. The seasonal atmospheric distribution and inventories of excess 14C from March 1955 to July 1969. Health and Safety Laboratory Environmental Quarterly 243.

    Google Scholar 

  • Townsend-Small, A., S.C. Tyler, D.E. Pataki, X. Xu, and L.E. Christensen. 2012. Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “Fugitive” fossil fuel emissions. Journal of Geophysical Research: Atmospheres 117: n/a.

    Google Scholar 

  • Trumbore, S.E., J.B. Gaudinski, P.J. Hanson, and J.R. Southon. 2002. quantifying ecosystem-atmosphere carbon exchange with a 14C Label. EOS transactions 83: 265–268.

    Article  Google Scholar 

  • Turnbull, J.C., D. Guenther, A. Karion, C. Sweeney, E. Anderson, A.E. Andrews, J. Kofler, N.L. Miles, T. Newberger, S.J. Richardson, and P.P. Tans. 2012. An integrated flask sample collection system for greenhouse gas measurements. Atmospheric Measurement Techniques 5: 2321–2327.

    Article  Google Scholar 

  • Turnbull, J.C., H. Graven, J. Miller, S. Lehmann, and Workshop Participants. 2013. Atmospheric Radiocarbon Workshop Report. Radiocarbon 55: 1470–1474.

    Article  Google Scholar 

  • Turnbull, J.C., A. Karion, M.L. Fischer, I. Faloona, T. Guilderson, S.J. Lehman, B.R. Miller, J.B. Miller, S. Montzka, T. Sherwood, S. Saripalli, C. Sweeney, and P.P. Tans. 2011. Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009. Atmospheric Chemistry and Physics 11: 705–721.

    Article  Google Scholar 

  • Turnbull, J.C., E.D. Keller, W.T. Baisden, G. Brailsford, T. Bromley, M. Norris, and A. Zondervan. 2014. Atmospheric measurement of point source fossil fuel CO2 emissions. Atmospheric Chemistry and Physics (in press).

    Google Scholar 

  • Turnbull, J.C., S.J. Lehman, J.B. Miller, R.J. Sparks, J.R. Southon, and P.P. Tans. 2007. A new high precision 14CO2 time series for North American continental air. Journal of Geophysical Research 112: D11310.

    Article  Google Scholar 

  • Turnbull, J.C., J.B. Miller, S.J. Lehman, P.P. Tans, R.J. Sparks, and J.R. Southon. 2006. Comparison of 14CO2, CO and SF6 as tracers for determination of recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophysical Research Letters 33: L01817.

    Article  Google Scholar 

  • Turnbull, J.C., J.B. Miller, S.J. Lehman, D.F. Hurst, W. Peters, P.P. Tans, J.R. Southon, S.A. Montzka, J.W. Elkins, D.J. Mondeel, P.A. Romashkin, N.F. Elansky, and A. Shkorokhod. 2009a. Spatial distribution of Δ 14CO2 across Eurasia: Measurements from the TROICA-8 expedition. Atmospheric Chemistry and Physics 9: 175–187.

    Article  Google Scholar 

  • Turnbull, J.C., P.J. Rayner, J.B. Miller, T. Naegler, P. Ciais, and A. Cozic. 2009b. On the use of 14CO2 as a tracer for fossil fuel CO2: Quantifying uncertainties using an atmospheric transport model. Journal of Geophysical Research 114: D22302.

    Article  Google Scholar 

  • UNSCEAR, 2000. Sources and Effects of Ionizing Radiation. UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, 1, Annex C. United Nations, New York.

    Google Scholar 

  • Usoskin, I.G., and B. Kromer. 2005. Reconstruction of the 14C production rate from measured relative abundance. Radiocarbon 47: 31–37.

    Google Scholar 

  • Van Der Laan, S., U. Karstens, R.E.M. Neubert, I.T. Van Der Laan-Luijkx, and H.A.J. Meijer. 2010. Observation-based estimates of fossil fuel-derived CO2 emissions in the Netherlands using Δ14C, CO and 222radon. Tellus B 62: 389–402.

    Article  Google Scholar 

  • Vogel, F.R., S. Hammer, A. Steinhof, B. Kromer, and I. Levin. 2010. Implication of weekly and diurnal 14C calibration on hourly estimates of CO-based fossil fuel CO2 at a moderately polluted site in south-western Germany. Tellus 62: 512–520.

    Article  Google Scholar 

  • Vogel, J.C., A. Fuls, E. Visser, and B. Becker. 1993. Pretoria calibration curve for short-lived samples, 1930–3350 B.C. Radiocarbon 35: 73–85.

    Google Scholar 

  • Weinstock, B., and H. Niki. 1972. Carbon Monoxide Balance in Nature. Science 176: 290–292.

    Article  Google Scholar 

  • Zondervan, A., and H.A.J. Meijer. 1996. Isotopic Characterisation of CO2 sources during regional pollution events using isotopic and radiocarbon analysis. Tellus 48B: 601–612.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Turnbull, J.C., Graven, H., Krakauer, N.Y. (2016). Radiocarbon in the Atmosphere. In: Schuur, E., Druffel, E., Trumbore, S. (eds) Radiocarbon and Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-319-25643-6_4

Download citation

Publish with us

Policies and ethics