Radiocarbon in the Atmosphere

  • J. C. Turnbull
  • H. Graven
  • N. Y. Krakauer
Chapter

Abstract

This chapter examines the controls on radiocarbon (14C) content of CO2 in the atmosphere over time. It discusses atmospheric observations and their interpretation using models of atmospheric transport, which describe the physical mixing of the atmosphere. This spans the simplest conceptual model of addition of a gas into a single well-mixed box of air, to multi-box models with three-dimensional global or regional atmospheric transport models. This format is applied to atmospheric history for five different time periods when different factors dominated atmospheric 14C.

References

  1. Boden, T.A., G. Marland, and R.J. Andres. 2012. Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.Google Scholar
  2. Bozhinova, D., M. Combe, S.W.L. Palstra, H.A.J. Meijer, M.C. Krol, and W. Peters. 2013. The importance of crop growth modeling to interpret the 14CO2 signature of annual plants. Global Biogeochemical Cycles 27: 792–803.CrossRefGoogle Scholar
  3. Braziunas, T.F., I.Y. Fung, and M. Stuiver. 1995. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Global Biogeochemical Cycles 9: 565–584.CrossRefGoogle Scholar
  4. Broecker, W.S., T.-H. Peng, and R. Engh. 1980. Modeling the carbon system. Radiocarbon 22: 565–598.Google Scholar
  5. Broecker, W.S., T.-H. Peng, H. Ostlund, and M. Stuiver. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research C4: 6953–6970.CrossRefGoogle Scholar
  6. Bruns, M., I. Levin, K.O. Munnich, M.W. Hubberten, and S. Fillipakis. 1980. Regional sources of volcanic carbon dioxide and their influence on C14 content of present-day plant material. Radiocarbon 22: 532–536.Google Scholar
  7. Caldeira, K., G.H. Rau, and P.B. Duffy. 1998. Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content. Geophysical Research Letters 25: 3811–3814.CrossRefGoogle Scholar
  8. Ciais, P., C.L. Sabine, G. Bala, L. Bopp, V. Brovkin, J.G. Canadell, A. Chabbra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quere, R. Mymeni, S. Piao, and P. Thornton. 2013. Carbon and other biogeochemical cycles. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  9. Currie, K.I., G. Brailsford, S. Nichol, A. J. Gomez, R.J. Sparks, K.R. Lassey, and K. Riedel. 2011. Tropospheric 14CO2 at Wellington, New Zealand: the world’s longest record. Biogeochemistry 104: 5–22. doi:10.1007/s10533-009-9352-6
  10. De Jong, A.F., and W.G. Mook. 1982. An anomalous Suess effect above Europe. Nature 298: 641–644.CrossRefGoogle Scholar
  11. Denning, A.S., M. Holzer, K.R. Gurney, M. Heimann, R.M. Law, P.J. Rayner, I.Y. Fung, S. Fan, S. Taguchi, P. Friedlingstein, Y. Balkanski, J. Taylor, M. Maiss, and I. Levin. 1999. Three-dimensional transport and concentration of SF6 a model intercomparison study (TransCom 2). Tellus 51B: 266–297.CrossRefGoogle Scholar
  12. Djuricin, S., D.E. Pataki, and X. Xu. 2010. A comparison of tracer methods for quantifying CO2 sources in an urban region. Journal of Geophysical Research 115.Google Scholar
  13. Friedrich, M., S. Remmele, B. Kromer, J. Hofmann, M. Spurk, K.F. Kaiser, C. Orcel, and M. Küppers. 2004. The 12,460-year hohenheim oak and pine tree-ring chronology from Central Europe: A unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46: 1111–1122.Google Scholar
  14. Frost, T., and R.C. Upstill-Goddard. 1999. Air-sea gas exchange into the millennium: Progress and uncertainties. Oceanography and Marine Biology 37(37): 1–45.Google Scholar
  15. Galli, I., S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi. 2011. Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection. Physical Review Letters 107: 270802.Google Scholar
  16. Graven, H.D., and N. Gruber. 2011. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: Potential impact on the estimation of fossil fuel-derived CO2. Atmospheric Chemistry and Physics 11: 12339–12349.CrossRefGoogle Scholar
  17. Graven, H.D., T.P. Guilderson, and R.F. Keeling. 2007. Methods for high-precision 14C AMS measurement of atmospheric CO2 at LLNL. Radiocarbon 49: 349–356.Google Scholar
  18. Graven, H.D., B.B. Stephens, T.P. Guilderson, T.L. Campos, D.S. Schimel, J.E. Campbell, and R.F. Keeling. 2009. Vertical profiles of biospheric and fossil fuel-derived CO2 and fossil fuel CO2:CO ratios from airborne measurements of Δ14C, CO2 and CO above Colorado, USA. Tellus B 61: 536–546.CrossRefGoogle Scholar
  19. Graven, H.D., N. Gruber, R. Key, S. Khatiwala, and X. Giraud. 2012a. Changing controls on oceanic radiocarbon: new insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. Journal of Geophysical Research 117.Google Scholar
  20. Graven, H.D., T.P. Guilderson, and R.F. Keeling. 2012b. Observations of radiocarbon in CO2 at La Jolla, California, USA 1992–2007: analysis of the long-term trend. Journal of Geophysical Research 117.Google Scholar
  21. Graven, H.D., T.P. Guilderson, and R.F. Keeling. 2012c. Observations of radiocarbon in CO2 at seven global sampling sites in the scripps flask network: Analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research 117.Google Scholar
  22. Graven, H.D., X. Xu, T. Guilderson, R.F. Keeling, S.E. Trumbore, and S. Tyler. 2013. Comparison of independent ∆14CO2 records at point barrow, Alaska. Radiocarbon 55: 1541–1545.CrossRefGoogle Scholar
  23. Gregg, J.S., R.J. Andres, and G. Marland. 2008. China: Emissions Pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophysical Research Letters 35.Google Scholar
  24. Gurney, K.R., R.M. Law, A.S. Denning, P.J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y.-H. Chen, P. Ciais, S. Fan, I.Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, T. Maki, S. Maksyutov, K.A. Masarie, P. Peylin, M. Prather, B.C. Pak, J. Randerson, J.L. Sarmiento, S. Taguchi, T. Takahashi, and C.-W. Yuen. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415: 626–630.CrossRefGoogle Scholar
  25. Gurney, K.R., D.L. Mendoza, Y. Zhou, M.L. Fischer, C.C. Miller, S. Geethakumar, and S. de la Rue du Can. 2009. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environmental Science and Technology 43: 5535–5541.CrossRefGoogle Scholar
  26. Heimann, M., and E. Maier-Reimer. 1996. On the relations between the oceanic uptake of CO2 and its carbon isotopes. Global Biogeochemical Cycles 10: 89–110.CrossRefGoogle Scholar
  27. Hesshaimer, V., and I. Levin. 2000. Revision of the stratospheric bomb 14CO2 inventory. Journal of Geophysical Research 105: 11641–11658.CrossRefGoogle Scholar
  28. Hesshaimer, V., M. Heimann, and I. Levin. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 201–203.Google Scholar
  29. Hogg, A., F. McCormac, T. Higham, P. Reimer, M. Baillie, and J. Palmer. 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: A.D. 1850–1950. Radiocarbon 44: 633–640.Google Scholar
  30. Hogg, A.G., C. Bronk Ramsey, C. Turney, and J. Palmer. 2009a. Bayesian evaluation of the Southern Hemisphere radiocarbon offset during the holocene. Radiocarbon 51: 1165–1176.Google Scholar
  31. Hogg, A.G., J. Palmer, G. Boswijk, P. Reimer, and D. Brown. 2009b. Investigating the interhemispheric 14C offset in the 1st millennium A.D. and assessment of laboratory bias and calibration errors. Radiocarbon 51: 1177–1186.Google Scholar
  32. Holton, J.R., P.H. Haynes, M.E. McIntyre, A.R. Douglass, R.B. Rood, and L. Pfister. 1995. Stratosphere-troposphere exchange. Reviews of Geophysics 33: 403–439.CrossRefGoogle Scholar
  33. Houghton, R.A. 2008. Carbon flux to the atmosphere from land-use changes: 1850–2005. TRENDS: A compendium of data on global change. Carbon dioxide information analysis center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, USA.Google Scholar
  34. Hsueh, D.Y., N.Y. Krakauer, J.T. Randerson, X. Xu, S.E. Trumbore, and J.R. Southon. 2007. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophysical Research Letters 34: L02816.CrossRefGoogle Scholar
  35. Hua, Q., and M. Barbetti. 2004. Review of tropospheric bomb C-14 data for carbon cycle modeling and age calibration purposes. Radiocarbon 46: 1273–1298.Google Scholar
  36. Hua, Q., and M. Barbetti. 2007. Influence of atmospheric circulation on regional (CO2)-14C differences. Journal of Geophysical Research-Atmospheres 112.Google Scholar
  37. Hua, Q., M. Barbetti, U. Zoppi, D. Fink, M. Watanasak, and G. Jacobsen. 2004. Radiocarbon in tropical tree rings during the little ice age. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 223: 489–494.CrossRefGoogle Scholar
  38. Hua, Q., M. Barbetti, D. Fink, K.F. Kaiser, M. Friedrich, B. Kromer, V.A. Levchenko, U. Zoppi, A.M. Smith, and F. Bertuch. 2009. Atmospheric C-14 variations derived from tree rings during the early younger dryas. Quaternary Science Reviews 28: 2982–2990.CrossRefGoogle Scholar
  39. Hua, Q., M. Barbetti, and A.Z. Rakowski. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55: 2059–2072.CrossRefGoogle Scholar
  40. Hughen, K., S. Lehman, J. Southon, J. Overpeck, O. Marchal, C. Herring, and J. Turnbull. 2004. C-14 activity and global carbon cycle changes over the past 50,000 years. Science 303: 202–207.CrossRefGoogle Scholar
  41. Jacob, D.J. 1999. Introduction to atmospheric chemistry. Princeton, NJ, USA: Princeton University Press.Google Scholar
  42. Johnston, C.A. 1994. Ecological engineering of wetlands by beavers. In Global Wetlands: Old World and New, ed. W.J. Mitsch, 379–384. Amsterdam: Elsevier.Google Scholar
  43. Jones, C., E. Robertson, V. Arora, P. Friedlingstein, E. Shevliakova, L. Bopp, V. Brovkin, T. Hajima, E. Kato, M. Kawamiya, S. Liddicoat, K. Lindsay, C.H. Reick, C. Roelandt, J. Segschneider, and J. Tjiputra. 2013. Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. Journal of Climate, 26: 4398–4413.CrossRefGoogle Scholar
  44. Jöckel, P., M.G. Lawrence, and C.A.M. Brenninkmeijer. 1999. Simulations of cosmogenic 14CO using the three-dimensional atmospheric transport model MATCH: Effects of 14C production distribution and the solar cycle. Journal of Geophysical Research, 104(D9): 11733–11743.Google Scholar
  45. Jöckel, P., and C.A.M. Brenninkmeijer. 2002. the seasonal cycle of cosmogenic 14CO at the surface level: A solar cycle adjusted, zonal-average climatology based on observations. Journal of Geophysical Research 107: 4656.CrossRefGoogle Scholar
  46. Keeling, C.D., and T. Whorf. 2005. Atmospheric CO2 records from sites in the SIO air sampling network. Trends: A compendium of data of global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak RIdge, Tenn., USA.Google Scholar
  47. Key, R.M., A. Kozyr, C.L. Sabine, K. Lee, R. Wanninkhof, J.L. Bullister, R.A. Feely, F.J. Millero, C. Mordy, and T.H. Peng. 2004. A global ocean carbon climatology: results from global data analysis project (GLODAP). Global Biogeochemical Cycles 18(4). doi:10.1029/2004gb002247(4).
  48. Kirschke, S., P. Bousquet1, P. Ciais, M. Saunois, J.G. Canadell, E.J. Dlugokencky, P. Bergamaschi, D. Bergmann, D.R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F.D.R. Chevallier, L. Feng, A. Fraser, M. Heimann, E.L. Hodson, A. Houweling, B.A. Josse, P.J. Fraser, P.B. Krummel, J.-F.O. Lamarque, R.L. Langenfelds, C.L. Quéré, V. Naik, S. O’Doherty, P.I. Palmer, I. Pison, D. Plummer, B. Poulter, R.G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D.T. Shindell, I.J. Simpson, R. Spahni, L.P. Steele, S.A. Strode, K. Sudo, S. Szopa, G. R.V.D. Werf, A. Voulgarakis, M.V. Weele, R.F. Weiss, J.E. Williams, and G. Zeng. 2013. Three decades of global methane sources and sinks. Nature Geoscience 6: 813–823.Google Scholar
  49. Kitigawa, H., H. Mukai, Y. Nojiri, Y. Shibata, T. Kobayashi, and T. Nojiri. 2004. Seasonal and secular variations of atmospheric 14CO2 over the Western Pacific since 1994. Radiocarbon 46: 901–910.Google Scholar
  50. Kjellstrom, E., J. Feichter, and G. Hoffman. 2000. Transport of SF6 and (CO2)-C14 in the atmospheric general circulation model ECHAM4. Tellus Series B-Chemical and Physical Meteorology 52: 1–18.CrossRefGoogle Scholar
  51. Knox, F., and B. McFadgen. 2004. Radiocarbon/tree ring calibration, solar activity, and upwelling of ocean water. Radiocarbon 46: 987–995.Google Scholar
  52. Kohler, P., R. Muscheler, and H. Fischer. 2006. A model-based interpretation of low-frequency changes in the carbon cycle during the last 120,000 years and its implications for the reconstruction of atmospheric delta C-14. Geochemistry Geophysics Geosystems 7.Google Scholar
  53. Krakauer, N., J. Randerson, F. Primeau, N. Gruber, and D. Menemenlis. 2006. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity. Tellus Series B-Chemical and Physical Meteorology 58: 390–417.CrossRefGoogle Scholar
  54. Krol, M.C., and J. Lelieveld. 2003. Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)? Journal of Geophysical Research D108.Google Scholar
  55. Krol, M.C., J.F. Meirink, P. Bergamaschi, J.E. Mak, D. Lowe, P. Jockel, S. Houweling, and T. Rockmann. 2008. What can 14CO measurements tell us about OH? Atmospheric Chemistry and Physics 8: 5033–5044.CrossRefGoogle Scholar
  56. Kuc, T., K. Rozanski, M. Zimnoch, J. Necki, L. Chmura, and D. Jelen. 2007. Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in central europe: long-term changes of regional anthropogenic fossil CO2 emissions. Radiocarbon 49: 807–816.Google Scholar
  57. Lal, D. 1988. Theoretically expected variations in the terrestrial cosmic-ray production rates of isotopes. In: Proceedings of the International school of Physics, Solar-Terrestrial Relationships and the Earth Environment in the Last Millennia, pp. 215–233.Google Scholar
  58. Lal, D., and Rama. 1966. Characteristics of global tropospheric mixing based on man-made C14 H3 and Sr90. Journal of Geophysical Research 71: 2865.CrossRefGoogle Scholar
  59. Land, C., J. Feichter, and R. Sausen. 2002. Impact of vertical resolution on the transport of passive tracers in the ECHAM4 model. Tellus B 54: 344–360.CrossRefGoogle Scholar
  60. Lassey, K.R., D.C. Lowe, and A.M. Smith. 2007. The atmospheric cycling of radiomethane and the “fossil fraction” of the methane source. Atmospheric Chemistry and Physics 7: 2141–2149.CrossRefGoogle Scholar
  61. Le Quere, C., C. Rodenbeck, E.T. Buitenhuis, T.J. Conway, R. Langenfelds, A. Gomez, C. Labuschagne, M. Ramonet, T. Nakazawa, N. Metzl, N. Gillett, and M. Heimann. 2007. Saturation of the southern ocean CO2 sink due to recent climate change. Science 316: 1735–1738.CrossRefGoogle Scholar
  62. Lerman, J.C., W.G. Mook, and J.C. Vogel. 1970. C-14 in tree rings from different localities. Radiocarbon variations and absolute chronology. In: Proceedings of the Twelfth Nobel Symposium held at the Institute of Physics at Uppsala University. Wiley Interscience Division, New York.Google Scholar
  63. Levin, I., R. Boesinger, G. Bonani, R.J. Francey, B. Kromer, K.O. Muennich, M. Suter, N.B. A. Trivett, and W. Wolfli. 1992. Radiocarbon in atmospheric carbon dioxide and methane global distribution and trends. In: Taylor, R.E., A. Long and R. S. Kra eds. Radiocarbon After Four Decades: An Interdisciplinary Perspective; Meeting, Lake Arrowhead, California, USA, 4–8 June 1990. Xviii + 596 p. New York, USA; Berlin, Germany: Springer. Illus: 503–518.Google Scholar
  64. Levin, I., and V. Hesshaimer. 2000. Radiocarbon: A unique tracer of global carbon cycle dynamics. Radiocarbon 42: 69–80.Google Scholar
  65. Levin, I., and U. Karstens. 2007. Inferring high-resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO observations. Tellus 59B: 245–250.CrossRefGoogle Scholar
  66. Levin, I., and B. Kromer. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46: 1261–1272.Google Scholar
  67. Levin, I., J. Schuchard, B. Kromer, and K.O. Munnich. 1989. The continental European Suess effect. Radiocarbon 31: 431–440.Google Scholar
  68. Levin, I., B. Kromer, M. Schmidt, and H. Sartorius. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30: 2194.CrossRefGoogle Scholar
  69. Levin, I., S. Hammer, B. Kromer, and F. Meinhardt. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391: 211–216.CrossRefGoogle Scholar
  70. Levin, I., T. Naegler, B. Kromer, M. Diehl, R.J. Francey, A.J. Gomez-Pelaez, L.P. Steele, D. Wagenbach, R. Weller, and D.E. Worthy. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B 62: 26–46.CrossRefGoogle Scholar
  71. Lovenduski, N.S., N. Gruber, S.C. Doney, and I.D. Lima. 2007. Enhanced CO2 outgassing in the southern ocean from a positive phase of the southern annular mode. Global Biogeochemical Cycles 21.Google Scholar
  72. Manning, M.R., D.C. Lowe, W.H. Melhuish, R.J. Sparks, G. Wallace, C.A.M. Brenninkmeijer, and R.C. McGill. 1990. The use of radiocarbon measurements in atmospheric sciences. Radiocarbon 32: 37–58.Google Scholar
  73. Manning, M.R., D.C. Lowe, R.C. Moss, G.E. Bodeker, and W. Allan. 2005. Short-term variations in the oxidizing power of the atmosphere. Nature 436: 1001–1004.CrossRefGoogle Scholar
  74. Marland, G. 2010. Accounting for carbon dioxide emissions from bioenergy systems. Journal of Industrial Ecology 14: 866–869.CrossRefGoogle Scholar
  75. Marland, G., T.A. Boden, and R.J. Andres. 2006. Global, regional and national CO2 emissions. Trends: A compedium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN.Google Scholar
  76. Masarik, J., and J. Beer. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the earth’s atmosphere. Journal of Geophysical Research-Atmospheres 104: 12099–12111.CrossRefGoogle Scholar
  77. Mazaud, A., C. Laj, E. Bard, M. Arnold, and E. Tric. 1991. Geomagnetic-field control of C-14 production over the Last 80 Ky—Implications for the radiocarbon timescale. Geophysical Research Letters 18: 1885–1888.CrossRefGoogle Scholar
  78. McCormac, F., A. Hogg, T. Higham, J. Lynch-Stieglitz, W. Broecker, M. Baillie, J. Palmer, L. Xiong, J. Pilcher, D. Brown, and S. Hoper. 1998. Temporal variation in the interhemispheric C-14 Offset. Geophysical Research Letters 25: 1321–1324.CrossRefGoogle Scholar
  79. McCormac, F., P. Reimer, A. Hogg, T. Higham, M. Baillie, J. Palmer, and M. Stuiver. 2002. Calibration of the radiocarbon time scale for the Southern Hemisphere: A.D. 1850–1950. Radiocarbon 44: 641–651.Google Scholar
  80. Meijer, H.A.J., H.M. Smid, E. Perez, and M.G. Keizer. 1996. Isotopic characterization of anthropogenic CO2 emissions using isotopic and radiocarbon analysis. Physical Chemistry of the Earth 21: 483–487.CrossRefGoogle Scholar
  81. Miller, J.B., C. Wolak, S.J. Lehman, C.E. Allison, H.D. Graven, T.P. Guilderson, R.F. Keeling, H.A.J. Meijer, T. Nakamura, T. Nakazawa, R.E. Neubert, A.M. Smith, J.R. Southon, and X. Xu. 2010. Preliminary results of from the first intercomparison of accelerator mass spectrometry atmospheric 14CO2 measurements. In: W. Brand, ed. 15th WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Measurement Techniques. World Meteorological Organization, Geneva.Google Scholar
  82. Meijer, H.A.J., M.H. Pertuisot, and J. van der Plicht. 2006. High-Accuracy C-14 measurements for atmospheric CO2 samples by AMS. Radiocarbon 48: 355–372.Google Scholar
  83. Miller, J.B., S.J. Lehman, S.A. Montzka, C. Sweeney, B.R. Miller, C. Wolak, E.J. Dlugokencky, J.R. Southon, J.C. Turnbull, and P.P. Tans. 2012. Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2. Journal of Geophysical Research 117.Google Scholar
  84. Miller, J.B., S. Lehmann, C. Wolak, J. Turnbull, G. Dunn, H. Graven, R. Keeling, H.A.J. Meijer, A.T. Aerts-Bijma, S.W.L. Palstra, A.M. Smith, C. Allison, J. Southon, X. Xu, T. Nakazawa, S. Aoki, T. Nakamura, T. Guilderson, B. LaFranchi, H. Mukai, Y. Terao, M. Uchida, and M. Kondo. 2013. Initial results of an intercomparison of AMS-based atmospheric 14CO2 measurements. Radiocarbon 55: 1475–1483.CrossRefGoogle Scholar
  85. Muscheler, R., J. Beer, G. Wagner, C. Laj, C. Kissel, G. Raisbeck, F. Yiou, and P. Kubik. 2004. Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth and Planetary Science Letters 219: 325–340.CrossRefGoogle Scholar
  86. Naegler, T., and I. Levin. 2006. Closing the global radiocarbon budget 1945–2005. Journal of Geophysical Research-Atmospheres 111.Google Scholar
  87. Naegler, T., and I. Levin. 2009a. Biosphere-atmosphere gross carbon exchange flux and the delta(CO2)-13C and Delta(CO2)-14C disequilibria constrained by the biospheric excess radiocarbon inventory. Journal of Geophysical Research-Atmospheres 114.Google Scholar
  88. Naegler, T., and I. Levin. 2009b. Observation-based global biospheric excess radiocarbon inventory 1963–2005. Journal of Geophysical Research 114.Google Scholar
  89. Nakamura, T., T. Nakazawa, H. Honda, H. Kitagawa, T. Machida, A. Ikeda, and E. Matsumoto. 1994. Seasonal variations in 14C concentrations of stratospheric CO2 measured with accelerator mass spectrometry. Nuclear Instruments and Methods B92: 413–416.CrossRefGoogle Scholar
  90. Nakamura, T., T. Nakazawa, N. Nakai, H. Kitigawa, H. Honda, T. Itoh, T. Machida, and E. Matsumoto. 1992. Measurement of 14C concentrations of stratospheric CO2 by accelerator mass spectrometry. Radiocarbon 34: 745–752.Google Scholar
  91. Nydal, R. 1963. Increase in radiocarbon from most recent series of thermonuclear tests. Nature 200: 212.CrossRefGoogle Scholar
  92. Nydal, R. 1968. Further investigation on transfer of radiocarbon in nature. Journal of Geophysical Research 73: 3617.CrossRefGoogle Scholar
  93. Nydal, R., and K. Lovseth. 1965. Distribution of Radiocarbon from Nuclear Tests. Nature 206: 1029.CrossRefGoogle Scholar
  94. Nydal, R., and K. Lovseth. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research-Oceans and Atmospheres 88: 3621–3642.CrossRefGoogle Scholar
  95. O’Brien, K. 1979. Secular variations in the production of cosmogenic isotopes in the earth’s atmosphere. Journal of Paleolimnology 84: 423.Google Scholar
  96. Oeschger, H., U. Siegenthaler, U. Schotterer, and A. Gugelmann. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus XXVII:168–192.Google Scholar
  97. Pacala, S.W., C. Breidenich, P.G. Brewer, I.Y. Fung, M.R. Gunson, G. Heddle, B.E. Law, G. Marland, K. Paustian, M. Prather, J.T. Randerson, P.P. Tans, and S.C. Wofsy. 2010. Verifying greenhouse gas emissions: methods to support international climate agreements. Committee on Methods for Estimating Greenhouse Gas Emissions: National Research Council.Google Scholar
  98. Palstra, S.W., U. Karstens, H.-J. Streurman, and H.A.J. Meijer. 2008. Wine ethanol 14C as a tracer for fossil fuel CO2 emissions in Europe: Measurements and model comparison. Journal of Geophysical Research 113.Google Scholar
  99. Pasquier-Cardin, A., P. Allard, T. Ferreira, E.C. Hatt, R. Coutinho, M. Fontugne, and M. Jaudon. 1999. Magma derived CO2 emissions recorded in 14C and 13C content of plants growing in furnas caldera, Azores. Journal of Volcanology and Geothermal Research 92: 195–207.CrossRefGoogle Scholar
  100. Peacock, S. 2004. Debate over the ocean bomb radiocarbon sink: Closing the gap. Global Biogeochemical Cycles 18.Google Scholar
  101. Petrenko, V.V., A.M. Smith, E.J. Brook, D.C. Lowe, K. Riedel, G. Brailsford, Q. Hua, H. Schaefer, N. Reeh, R.F. Weiss, D.M. Etheridge, and J.P. Severinghaus. 2009. 14CH4 measurements in greenland ice: Investigating the last glacial termination CH4 sources. Science 324: 506–508.CrossRefGoogle Scholar
  102. Peylin, P., S. Houweling, M. Krol, U. Karstens, C. Rodenbeck, C. Geels, A. Vermeulen, B. Badawy, C. Aulagnier, T. Pregger, F. Delage, G. Pieterse, P. Ciais, and M. Heimann. 2011. Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: Model intercomparison. Atmospheric Chemistry and Physics 11: 6607–6622.CrossRefGoogle Scholar
  103. Quay, P.D., J. Stutsman, D. Wilbur, A.K. Snover, E.J. Dlugokencky, and T.A. Brown. 1999. The isotopic composition of atmospheric methane. Global Biogeochemical Cycles 13: 445–461.CrossRefGoogle Scholar
  104. Rafter, T.A., and G.J. Fergusson. 1957. “Atom bomb effect”—Recent increase of carbon-14 content of the atmosphere and biosphere. Science 126: 557–558.CrossRefGoogle Scholar
  105. Randerson, J., I. Enting, E. Schuur, K. Caldeira, and I. Fung. 2002. Seasonal and Latitudinal variability of troposphere ∆(CO2)-14C: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochemical Cycles 16.Google Scholar
  106. Rayner, P.J., M.R. Raupach, M. Paget, P. Peylin, and E. Koffi. 2010. A new global gridded data set of CO2 emissions from fossil fuel combustion: Methodology and evaluation. Journal of Geophysical Research 115: D19306.CrossRefGoogle Scholar
  107. Reimer, P.J. 2013. IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years CAL BP. Radiocarbon 55: 1869–1887.CrossRefGoogle Scholar
  108. Reimer, P.J., M.G.L. Baillie, E. Bard, A. Bayliss, J.W. Beck, P.G. Blackwell, C.B. Ramsey, C.E. Buck, G.S. Burr, R.L. Edwards, M. Friedrich, P.M. Grootes, T.P. Guilderson, I. Hajdas, T.J. Heaton, A.G. Hogg, K.A. Hughen, K.F. Kaiser, B. Kromer, F.G. McCormac, S.W. Manning, R.W. Reimer, D.A. Richards, J.R. Southon, S. Talamo, C.S.M. Turney, J. van der Plicht, and C.E. Weyhenmeye. 2009. IntCal09 and marine09 radiocarbon age calibration curves, 0–50,000 years CAL BP. Radiocarbon 51: 1111–1150.Google Scholar
  109. Revelle, R., and H.E. Suess. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9: 18–27.CrossRefGoogle Scholar
  110. Riley, W.G., D.Y. Hsueh, J.T. Randerson, M.L. Fischer, J. Hatch, D.E. Pataki, W. Wang, and M.L. Goulden. 2008. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. Journal of Geophysical Research 113.Google Scholar
  111. Rodgers, K.B., S.E. Mikaloff-Fletcher, D. Bianchi, C. Beaulieu, E.D. Galbraith, A. Gnanadesikan, A.G. Hogg, D. Iudicone, B.R. Lintner, T. Naegler, P.J. Reimer, J.L. Sarmiento, and R.D. Slater. 2011. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of southern ocean winds. Climate of the Past 7: 1123–1138.CrossRefGoogle Scholar
  112. Saurer, M., P. Cherubini, G. Bonani, and R. Siegwolf. 2003. Tracing carbon uptake from a natural CO2 spring into tree rings: An isotope approach. Tree Physiology 23: 997–1004.CrossRefGoogle Scholar
  113. Schuur, E.A.G., et al. 2015. Climate change and the permafrost carbon feedback. Nature, 520(7546): 171–179, doi:10.1038/nature14338
  114. Scott, E.M., G.T. Cook, P. Naysmith, C. Bryant, and D. O’Donnell. 2007. A report on phase 1 of the 5th international radiocarbon intercomparison (VIRI). Radiocarbon 49: 409–426.Google Scholar
  115. Shibata, S., E. Kawano, and T. Nakabayashi. 2005. Atmospheric [14C]CO2 variations in Japan during 1982–1999 based on 14C measurements of rice grains. Applied Radiation and Isotopes 63: 285–290.CrossRefGoogle Scholar
  116. Slater, J., L.A. Currie, J. Dibb, and B.A.J. Benner. 2002. Distinguishing the relative contribution of fossil fuel and biomass combustion aerosols deposited at summit, greenland through isotopic and molecular characterization of insoluble carbon. Atmospheric Environment 36: 4463–4477.CrossRefGoogle Scholar
  117. Stephens, B., K. Gurney, P. Tans, C. Sweeney, W. Peters, L. Bruhwiler, P. Ciais, M. Ramonet, P. Bousquet, T. Nakazawa, S. Aoki, T. Machida, G. Inoue, N. Vinnichenko, J. Lloyd, A. Jordan, M. Heimann, O. Shibistova, R. Langenfelds, L. Steele, R. Francey, and A. Denning. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316: 1732–1735.CrossRefGoogle Scholar
  118. Stuiver, M., and T.F. Braziunas. 1993. Sun, ocean, climate and atmospheric 14CO2: An evaluation of causal and spectral relationships. Holocene 3: 289–305.CrossRefGoogle Scholar
  119. Stuiver, M., and T.F. Braziunas. 1998. Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25: 329–332.CrossRefGoogle Scholar
  120. Stuiver, M., and P.D. Quay. 1981. Atmospheric 14C changes resulting from fossil-fuel CO2 release and cosmic-ray flux variability. Earth and Planetary Science Letters 53: 349–362.CrossRefGoogle Scholar
  121. Suess, H.E. 1955. Radiocarbon concentration in modern wood. Science 122: 415–417.CrossRefGoogle Scholar
  122. Sweeney, C., E. Gloor, A. Jacobson, R. Key, G. McKinley, J. Sarmiento, and R. Wanninkhof. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles 21.Google Scholar
  123. Szidat, S., T.M. Jenk, H.-A. Synal, M. Kalberer, L. Wacker, I. Hajdas, A. Kasper-Giebl, and U. Baltensperger. 2006. Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in zurich as traced by 14C. Journal of Geophysical Research 111.Google Scholar
  124. Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, D.W. Chipman, B. Hales, G. Friederich, F. Chavez, C. Sabine, A. Watson, D.C.E. Bakker, U. Schuster, N. Metzl, H. Yoshikawa-Inoue, M. Ishii, T. Midorikawa, Y. Nojiri, A. Kortzinger, T. Steinhoff, M. Hoppema, J. Olafsson, T.S. Arnarson, B. Tilbrook, T. Johannessen, A. Olsen, R. Bellerby, C.S. Wong, B. Delille, N.R. Bates, and H.J.W. de Baar. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part I-Oceanographic Research Papers 56: 554.Google Scholar
  125. Tans, P.P., A.F. De Jong, and W.G. Mook. 1979. Natural atmospheric 14C variation and the Suess effect. Nature 280: 826–828.CrossRefGoogle Scholar
  126. Telegadas, K. 1971. The seasonal atmospheric distribution and inventories of excess 14C from March 1955 to July 1969. Health and Safety Laboratory Environmental Quarterly 243.Google Scholar
  127. Townsend-Small, A., S.C. Tyler, D.E. Pataki, X. Xu, and L.E. Christensen. 2012. Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “Fugitive” fossil fuel emissions. Journal of Geophysical Research: Atmospheres 117: n/a.Google Scholar
  128. Trumbore, S.E., J.B. Gaudinski, P.J. Hanson, and J.R. Southon. 2002. quantifying ecosystem-atmosphere carbon exchange with a 14C Label. EOS transactions 83: 265–268.CrossRefGoogle Scholar
  129. Turnbull, J.C., D. Guenther, A. Karion, C. Sweeney, E. Anderson, A.E. Andrews, J. Kofler, N.L. Miles, T. Newberger, S.J. Richardson, and P.P. Tans. 2012. An integrated flask sample collection system for greenhouse gas measurements. Atmospheric Measurement Techniques 5: 2321–2327.CrossRefGoogle Scholar
  130. Turnbull, J.C., H. Graven, J. Miller, S. Lehmann, and Workshop Participants. 2013. Atmospheric Radiocarbon Workshop Report. Radiocarbon 55: 1470–1474.CrossRefGoogle Scholar
  131. Turnbull, J.C., A. Karion, M.L. Fischer, I. Faloona, T. Guilderson, S.J. Lehman, B.R. Miller, J.B. Miller, S. Montzka, T. Sherwood, S. Saripalli, C. Sweeney, and P.P. Tans. 2011. Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009. Atmospheric Chemistry and Physics 11: 705–721.CrossRefGoogle Scholar
  132. Turnbull, J.C., E.D. Keller, W.T. Baisden, G. Brailsford, T. Bromley, M. Norris, and A. Zondervan. 2014. Atmospheric measurement of point source fossil fuel CO2 emissions. Atmospheric Chemistry and Physics (in press).Google Scholar
  133. Turnbull, J.C., S.J. Lehman, J.B. Miller, R.J. Sparks, J.R. Southon, and P.P. Tans. 2007. A new high precision 14CO2 time series for North American continental air. Journal of Geophysical Research 112: D11310.CrossRefGoogle Scholar
  134. Turnbull, J.C., J.B. Miller, S.J. Lehman, P.P. Tans, R.J. Sparks, and J.R. Southon. 2006. Comparison of 14CO2, CO and SF6 as tracers for determination of recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophysical Research Letters 33: L01817.CrossRefGoogle Scholar
  135. Turnbull, J.C., J.B. Miller, S.J. Lehman, D.F. Hurst, W. Peters, P.P. Tans, J.R. Southon, S.A. Montzka, J.W. Elkins, D.J. Mondeel, P.A. Romashkin, N.F. Elansky, and A. Shkorokhod. 2009a. Spatial distribution of Δ 14CO2 across Eurasia: Measurements from the TROICA-8 expedition. Atmospheric Chemistry and Physics 9: 175–187.CrossRefGoogle Scholar
  136. Turnbull, J.C., P.J. Rayner, J.B. Miller, T. Naegler, P. Ciais, and A. Cozic. 2009b. On the use of 14CO2 as a tracer for fossil fuel CO2: Quantifying uncertainties using an atmospheric transport model. Journal of Geophysical Research 114: D22302.CrossRefGoogle Scholar
  137. UNSCEAR, 2000. Sources and Effects of Ionizing Radiation. UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, 1, Annex C. United Nations, New York.Google Scholar
  138. Usoskin, I.G., and B. Kromer. 2005. Reconstruction of the 14C production rate from measured relative abundance. Radiocarbon 47: 31–37.Google Scholar
  139. Van Der Laan, S., U. Karstens, R.E.M. Neubert, I.T. Van Der Laan-Luijkx, and H.A.J. Meijer. 2010. Observation-based estimates of fossil fuel-derived CO2 emissions in the Netherlands using Δ14C, CO and 222radon. Tellus B 62: 389–402.CrossRefGoogle Scholar
  140. Vogel, F.R., S. Hammer, A. Steinhof, B. Kromer, and I. Levin. 2010. Implication of weekly and diurnal 14C calibration on hourly estimates of CO-based fossil fuel CO2 at a moderately polluted site in south-western Germany. Tellus 62: 512–520.CrossRefGoogle Scholar
  141. Vogel, J.C., A. Fuls, E. Visser, and B. Becker. 1993. Pretoria calibration curve for short-lived samples, 1930–3350 B.C. Radiocarbon 35: 73–85.Google Scholar
  142. Weinstock, B., and H. Niki. 1972. Carbon Monoxide Balance in Nature. Science 176: 290–292.CrossRefGoogle Scholar
  143. Zondervan, A., and H.A.J. Meijer. 1996. Isotopic Characterisation of CO2 sources during regional pollution events using isotopic and radiocarbon analysis. Tellus 48B: 601–612.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. C. Turnbull
    • 1
    • 2
  • H. Graven
    • 3
  • N. Y. Krakauer
    • 4
  1. 1.National Isotope Centre, GNS ScienceLower HuttNew Zealand
  2. 2.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  3. 3.Department of Physics and Grantham Institute for Climate ChangeImperial College LondonLondonUK
  4. 4.Department of Civil EngineeringThe City College of New YorkNew YorkUSA

Personalised recommendations