Dataset Summary Visualization with LODSight

  • Marek Dudáš
  • Vojtěch Svátek
  • Jindřich Mynarz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9341)


We present a web-based tool that shows a summary of an RDF dataset as a visualization of a graph formed from classes, datatypes and predicates used in the dataset. The visualization should allow to quickly and easily find out what kind of data the dataset contains and its structure. It also shows how vocabularies are used in the dataset.


  1. 1.
    Brunetti, J.M., Garca, R., Auer, S.: From overview to facets and pivoting for interactive exploration of semantic web data. Int. J. Semantic Web Inf. Syst. 9, 120 (2013). doi: 10.4018/jswis.2013010101CrossRefGoogle Scholar
  2. 2.
    Campinas, S., et al.: Efficiency and precision trade-offs in graph summary algorithms. In: Proceedings of the 17th International Database Engineering & Applications Symposium, pp. 38–47. ACM (2013)Google Scholar
  3. 3.
    Kinsella, S., et al.: An interactive map of semantic web ontology usage. In: 12th International Conference Information Visualisation, IV 2008, pp. 179–184. IEEE (2008)Google Scholar
  4. 4.
    Khatchadourian, S., Consens, M.P.: ExpLOD: summary-based exploration of interlinking and RDF usage in the linked open data cloud. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 272–287. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  5. 5.
    Li, H.: Data profiling for semantic web data. In: Wang, F.L., Lei, J., Gong, Z., Luo, X. (eds.) WISM 2012. LNCS, vol. 7529, pp. 472–479. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Maali, F.: SPARQture: A More Welcoming Entry to SPARQL Endpoints.
  7. 7.
    Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation for RDF queries with multiple joins. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 984–994. IEEE (2011)Google Scholar
  8. 8.
    Pham, M.: Self-organizing structured RDF in MonetDB. In: 2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW), pp. 310–313. IEEE (2013)Google Scholar
  9. 9.
    Presutti, V., et al.: Extracting core knowledge from linked data. In: Proceedings of the Second Workshop on Consuming Linked Data, COLD 2011 (2011)Google Scholar
  10. 10.
    Svátek, V., et al.: B-Annot: supplying background model annotations for ontology coherence testing. In: 3rd Workshop on Debugging Ontologies and Ontology Mappings at ESWC 2014, Heraklion, Crete (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Marek Dudáš
    • 1
  • Vojtěch Svátek
    • 1
  • Jindřich Mynarz
    • 1
  1. 1.University of EconomicsPragueCzech Republic

Personalised recommendations