SentiML++: An Extension of the SentiML Sentiment Annotation Scheme

  • Malik M. Saad Missen
  • Mohammed Attik
  • Mickaël Coustaty
  • Antoine Doucet
  • Cyril Faucher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9341)

Abstract

In this paper, we propose SentiML++, an extension of SentiML with a focus on annotating opinions answering aspects of the general question “who has what opinion about whom in which context?”. A detailed comparison with SentiML and other existing annotation schemes is also presented. The data collection annotated with SentiML has also been annotated with SentiML++ and is available for download for research purpose.

References

  1. 1.
    Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 28(2), 15–21 (2013)CrossRefGoogle Scholar
  2. 2.
    Di Bari, M., Sharoff, S., Thomas, M.: Sentiml: Functional annotation for multilingual sentiment analysis. In: Proceedings of DH-CASE 2013, pp. 15:1–15:7. ACM, New York (2013). http://doi.acm.org/10.1145/2517978.2517994
  3. 3.
    Liu, B.: Sentiment analysis and subjectivity. In: Indurkhya, N., Damerau, F.J. (eds.) Handbook of Natural Language Processing, 2nd edn. Taylor and Francis, Boca Raton (2010)Google Scholar
  4. 4.
    Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 415–463. Springer, Berlin (2012)CrossRefGoogle Scholar
  5. 5.
    Martin, J.R., White, P.R.R.: The language of evaluation, appraisal in English. Palgrave Macmillan, Basingstoke (2005) CrossRefGoogle Scholar
  6. 6.
    Missen, M.M.S., Boughanem, M., Cabanac, G.: Opinion mining: reviewed from word to document level. Soc. Netw. Anal. Min. 3(1), 107–125 (2013). doi: 10.1007/s13278-012-0057-9CrossRefGoogle Scholar
  7. 7.
    Oren, E., Möller, K., Scerri, S., Handschuh, S., Sintek, M.: What are semantic annotations? Technical report, DERI Galway (2006). http://www.siegfried-handschuh.net/pub/2006/whatissemannot2006.pdf
  8. 8.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008). doi: 10.1561/1500000011CrossRefGoogle Scholar
  9. 9.
    Robaldo, L., Caro, L.D.: Opinionmining-ml. Comput. Stan. Interfaces 35(5), 454–469 (2013)CrossRefGoogle Scholar
  10. 10.
    Schröder, M., Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., Zovato, E.: EmotionML – an upcoming standard for representing emotions and related states. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011, Part I. LNCS, vol. 6974, pp. 316–325. Springer, Heidelberg (2011) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Malik M. Saad Missen
    • 1
  • Mohammed Attik
    • 1
  • Mickaël Coustaty
    • 1
  • Antoine Doucet
    • 1
  • Cyril Faucher
    • 1
  1. 1.L3i Laboratory, Avenue Michel CrépeauUniversity of La RochelleLa RochelleFrance

Personalised recommendations