SentiML++: An Extension of the SentiML Sentiment Annotation Scheme

  • Malik M. Saad Missen
  • Mohammed Attik
  • Mickaël Coustaty
  • Antoine Doucet
  • Cyril Faucher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9341)

Abstract

In this paper, we propose SentiML++, an extension of SentiML with a focus on annotating opinions answering aspects of the general question “who has what opinion about whom in which context?”. A detailed comparison with SentiML and other existing annotation schemes is also presented. The data collection annotated with SentiML has also been annotated with SentiML++ and is available for download for research purpose.

References

  1. 1.
    Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 28(2), 15–21 (2013)CrossRefGoogle Scholar
  2. 2.
    Di Bari, M., Sharoff, S., Thomas, M.: Sentiml: Functional annotation for multilingual sentiment analysis. In: Proceedings of DH-CASE 2013, pp. 15:1–15:7. ACM, New York (2013). http://doi.acm.org/10.1145/2517978.2517994
  3. 3.
    Liu, B.: Sentiment analysis and subjectivity. In: Indurkhya, N., Damerau, F.J. (eds.) Handbook of Natural Language Processing, 2nd edn. Taylor and Francis, Boca Raton (2010)Google Scholar
  4. 4.
    Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 415–463. Springer, Berlin (2012)CrossRefGoogle Scholar
  5. 5.
    Martin, J.R., White, P.R.R.: The language of evaluation, appraisal in English. Palgrave Macmillan, Basingstoke (2005) CrossRefGoogle Scholar
  6. 6.
    Missen, M.M.S., Boughanem, M., Cabanac, G.: Opinion mining: reviewed from word to document level. Soc. Netw. Anal. Min. 3(1), 107–125 (2013). doi:10.1007/s13278-012-0057-9 CrossRefGoogle Scholar
  7. 7.
    Oren, E., Möller, K., Scerri, S., Handschuh, S., Sintek, M.: What are semantic annotations? Technical report, DERI Galway (2006). http://www.siegfried-handschuh.net/pub/2006/whatissemannot2006.pdf
  8. 8.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008). doi:10.1561/1500000011 CrossRefGoogle Scholar
  9. 9.
    Robaldo, L., Caro, L.D.: Opinionmining-ml. Comput. Stan. Interfaces 35(5), 454–469 (2013)CrossRefGoogle Scholar
  10. 10.
    Schröder, M., Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., Zovato, E.: EmotionML – an upcoming standard for representing emotions and related states. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011, Part I. LNCS, vol. 6974, pp. 316–325. Springer, Heidelberg (2011) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Malik M. Saad Missen
    • 1
  • Mohammed Attik
    • 1
  • Mickaël Coustaty
    • 1
  • Antoine Doucet
    • 1
  • Cyril Faucher
    • 1
  1. 1.L3i Laboratory, Avenue Michel CrépeauUniversity of La RochelleLa RochelleFrance

Personalised recommendations