A Semantic, Task-Centered Collaborative Framework for Science

  • Yolanda Gil
  • Felix Michel
  • Varun Ratnakar
  • Matheus Hauder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9341)


This paper gives an overview of the Organic Data Science framework, a new approach for scientific collaboration that opens the science process and exposes information about shared tasks, participants, and other relevant entities. The framework enables scientists to formulate new tasks and contribute to tasks posed by others. The framework is currently in use by a science community studying the age of water, and is beginning to be used by others.


Organic data science Semantic wiki Collaborative web platforms 



We gratefully acknowledge funding from the US National Science Foundation under grant IIS-1344272.


  1. 1.
    Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic Wikipedia. Journal of Web Semantics 5(4), 251–261 (2007)CrossRefGoogle Scholar
  2. 2.
    Kraut, R.E., Resnick, P.: Building Successful Online Communities. IT Press, Cambridge (2011)Google Scholar
  3. 3.
    Michel, F., Gil, Y., Ratnakar, V., Hauder, M.: A task-centered interface for on-line collaboration in science. In: Proceedings of the ACM International Conference on Intelligent User Interfaces, Atlanta, GA (2015)Google Scholar
  4. 4.
    Gil, Y., Michel, F., Ratnakar, V., Read, J., Hauder, M., Duffy, C., Hanson, P., Dugan, H.: Supporting open collaboration in science through explicit and linked semantic description of processes. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 591–605. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Yolanda Gil
    • 1
  • Felix Michel
    • 1
  • Varun Ratnakar
    • 1
  • Matheus Hauder
    • 2
  1. 1.Information Sciences InstituteUniversity of Southern CaliforniaMarina del ReyUSA
  2. 2.Software Engineering for Business Information SystemsTechnical University MunichMunichGermany

Personalised recommendations