Skip to main content

Genetic Diversity and Erosion—A Global Perspective

  • Chapter
  • First Online:
Genetic Diversity and Erosion in Plants

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 7))

Abstract

Biodiversity is continually declining, according to global biodiversity indicators (Butchart et al. in Science 328:1164–1168, 2010). Population trends, habitat extent, habitat condition, and composition of species communities—indicators of the state of diversity—are declining, while at the same time pressures on biodiversity posed by resource consumption, invasive alien species, pollution, overexploitation, and climate change are increasing. The rate of current loss of species is reported to be 100–1000 times the natural background rate (Chivian and Berstein in Sustaining life on earth. How human health depends on biodiversity. Oxford University Press, New York, 2008, Chivian and Berstein in How our health depends on biodiversity. Center for Health and the global environment. Harvard medical school, Boston, 2010; Pimm et al. in Science 344, 2014). Dramatic though that figure is, it underestimates the full loss of diversity because it ignores loss at both genetic and population level (Myers in Seeds and sovereignty. The use and control of plant genetic resources. Duke University Press, Durham, 1988; Mendenhall et al. in Biol Conserv 151:32–34, 2012). One of the first publications alerting the world about the losses of genetic diversity within species, later termed “genetic erosion,” was published in 1914 (Baur in Die Bedeutung der primitiven Kulturrassen und der wilden Verwandten unserer Kulturpflanzen fuer die Pflanzenzuechtung; Jahrbuch Deutsche Landwirt, 1914). The first concern about loss of diversity regarded agriculturally important species, as these are of direct and daily use to people. One hundred years later, genetic erosion is addressed at the global level in international agendas that set targets and propose actions to reduce the loss of genetic diversity, such as the Global Plan of Action (GPA) for Plant Genetic Resources for Food and Agriculture (PGRFA) of the FAO Commission on Genetic Resources for Food and Agriculture (CGRFA) and the Aichi biodiversity targets of the Convention on Biodiversity (CBD). The fact that genetic erosion today is addressed at global level implies that the crucial importance of genetic diversity for sustaining life on earth has been recognized. Strategies and actions to reduce the ongoing loss of genetic diversity are now in place. However, these measures have been found only partially successful as only few significant reductions in rates of decline were observed (Butchart et al. in Science 328:1164–1168, 2010), and global estimates of the extent of genetic erosion are still lacking. This chapter focuses on the importance of genetic diversity in PGRFA, how diversity of PGRFA is affected by genetic erosion, development of activities undertaken by international bodies to address genetic erosion, options to improve knowledge about the underlying processes that lead to genetic erosion, and the need for systematic monitoring of genetic diversity to better safeguard, conserve, and use PGRFA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The IBPGR became the International Plant Genetic Resources Institute (IPGRI) in 1991 and in 1994 IPGRI started to operate as an independent CGIAR center, since 2006 it operates under the name Bioversity International.

  2. 2.

    richness and evenness are two important concepts of diversity, the first being the number of different kinds of entities and the second the relative frequency of these entities (Brown 2008).

  3. 3.

    http://bioversity.github.io/geosite/.

  4. 4.

    verified on http://eurisco.ecpgr.org/search/advanced_search.html; 15 July 2014.

  5. 5.

    The Global Crop Diversity Trust was founded in 2004 in Rome, Italy by FAO and Bioversity International on behalf of CGIAR.

  6. 6.

    http://cropgenebank.sgrp.cgiar.org/ or http://cgkb.cgiar.croptrust.org/.

References

  • Akimoto M, Shimamoto Y, Morishima H (1999) The extinction of genetic resources of Asian wild rice, Oryza rufipogon Griff: a case study in Thailand. Genet Resour Crop Evol 46:419–425

    Article  Google Scholar 

  • Alsos IG, Ehrich D, Thuiller W et al (2012) Genetic consequences of climate change for northern plants. Proc R Soc Lond B: Biol Sci 279:2042–2051

    Article  Google Scholar 

  • Arunachalam V (1999) Genetic erosion in plant genetic resources and early warning system: a diagnosis dilating genetic conservation. In: Serwinski J, Faberova I (eds) Proceedings of the technical meeting on the methodology of the FAO world information and early warning system on plant genetic resources, held at the Research Institute of Crop Production, Prague, Czech Republic 21–23 June 1999. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Barry MB, Pham JL, Béavogui S et al (2008) Diachronic (1979–2003) analysis of rice genetic diversity in Guinea did not reveal genetic erosion. Genet Resour Crop Evol 55(5):723–733

    Article  Google Scholar 

  • Baur E (1914) Die Bedeutung der primitiven Kulturrassen und der wilden Verwandten unserer Kulturpflanzen fuer die Pflanzenzuechtung; Jahrbuch Deutsche Landwirt. Gesell. (Saatzuchtabteilung)

    Google Scholar 

  • Bellon MR (1996) The dynamics of crop infraspecific diversity: a conceptual framework at the farmer level. Econ Bot 50:26–39

    Article  Google Scholar 

  • Bennett E (1968) Record of the FAO/IBP technical conference on the exploration, utilization and conservation of plant genetic resources, Rome, Italy 18–26 September 1967. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Bertoldo JG, Coimbra JLM, Guidolin AF et al (2014) Agronomic potential of genebank landrace elite accessions for common bean genetic breeding. Sci Agricola 71(2):120–125

    Article  Google Scholar 

  • Bezançon G, Pham JL, Deu M et al (2009) Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum (L.) R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genet Resour Crop Evol 56(2):223–236

    Article  Google Scholar 

  • Bilz M, Kell SP, Maxted N, Lansdown RV (2011) European red list of vascular plants. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Bioversity International (2014) Strategic action plan to strengthen conservation and use of Mesoamerican plant genetic resources in adapting agriculture to climate change (SAPM) 2014–2024. Bioversity International, Cali, Colombia

    Google Scholar 

  • Bonneuil C, Goffaux R, Bonnin I et al (2012) A new integrative indicator to assess crop genetic diversity. Ecol Ind 23:280–289

    Article  Google Scholar 

  • Börner A, Chebotar S, Korzun V (2000) Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theor Appl Genet 100:494–497

    Article  Google Scholar 

  • Brown AHD (2008) Indicators of genetic diversity, genetic erosion and genetic vulnerability for plant genetic resources for food and agriculture. Thematic background study. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Brush SB (1995) In situ conservation of landraces in centres of crop diversity. Crop Sci 35:346–354

    Article  Google Scholar 

  • Brush SB (1999) Genetic erosion of crop populations in centers of diversity: a revision. In: Serwinski J, Faberova I (eds) Proceedings of the technical meeting on the methodology of the FAO world information and early warning system on plant genetic resources, held at the Research Institute of Crop Production, Prague, Czech Republic 21–23 June 1999. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Brush SB (2004) Farmers’ bounty: locating crop diversity in the contemporary world. Yale University Press, New Haven (CT)

    Book  Google Scholar 

  • Brush SB, Meng E (1998) Farmers’ valuation and conservation of crop genetic resources. Genet Resour Crop Evol 45:139–150

    Article  Google Scholar 

  • Brütting C, Hensen I, Wesche K (2013) Ex situ cultivation affects genetic structure and diversity in arable plants. Plant Biol 15(3):505–513

    Article  PubMed  CAS  Google Scholar 

  • Butchart SHM et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Calinger KM, Queenborough S, Curtis PS (2013) Herbarium specimens reveal the footprint of climate change on flowering trends across north-central North America. Ecol Lett 16:1037–1044

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavatassi R, Lipper L, Hopkins J (2006) The role of crop genetic diversity in coping with agricultural production shocks: insights from Eastern Ethiopia. Agricultural development economics division, working paper no. 06–17. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Ceccarelli S, Grando S (2000) Barley landraces from the fertile crescent: a lesson for plant breeders. In: Brush S (ed) Genes in the field: on-farm conservation of crop diversity. Lewis Publishers USA, International Development Research Centre Canada and International Plant Genetic Resources Institute Italy

    Google Scholar 

  • CGIAR (1972) The collection, evaluation and conservation of plant genetic resources. Report of TAC Ad Hoc working group held in Beltsville, USA—20–25 March 1972. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Chambers KJ, Brush SB, Grote MN, Gepts P (2007) Describing maize (Zea mays L.) landrace persistence in the Bajío of Mexico: a survey of 1940s and 1950s collection Locations. Econ Bot 61(1):60–72

    Article  Google Scholar 

  • Chaudhuri SK (2005) Genetic erosion of agrobiodiversity in India and intellectual property rights: interplay and some key issues. Patentmatics 5(6):1–10

    Google Scholar 

  • Chebotar S, Röder MS, Korzun V et al (2003) Molecular studies on genetic integrity of open-pollinating species rye (Secale cereale L.) after long-term genebank maintenance. Theor Appl Genet 107(8):1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Chessa C, Nieddu G (2005) Analysis of diversity in the fruit tree genetic resources from a Mediterranean island. Genet Resour Crop Evol 52:267–276

    Article  Google Scholar 

  • Chivian E, Bernstein E (eds) (2008) Sustaining life on earth. How human health depends on biodiversity. Oxford University Press, New York

    Google Scholar 

  • Chivian E, Bernstein E (eds) (2010) How our health depends on biodiversity. Center for Health and the global environment. Harvard medical school, Boston

    Google Scholar 

  • Choudhary G, Ranjitkumar N, Surapaneni M et al (2013) Molecular genetic diversity of major indian rice cultivars over decadal periods. PLoS ONE 8(6):e66197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen MJ, Andersen SB, Ortiz R (2002) Diversity changes in an intensively bred wheat germplasm during the 20th century. Mol Breed 9:1–11

    Article  Google Scholar 

  • Cieslarova J, Smykal P, Dockalova Z et al (2011) Molecular evidence of genetic diversity changes in pea (Pisum sativum L.) germplasm after long-term maintenance. Genet Resour Crop Evol 58:439–451

    Article  Google Scholar 

  • Cieslarova J, Hybl M, Griga M, Smykal P (2012) Molecular analysis of temporal genetic structuring in pea (Pisum sativum L.) cultivars bred in the Czech Republic and in former Czechoslovakia since the mid-20th century. Czech J Genet Plant Breed 48(2):61–73

    CAS  Google Scholar 

  • CIMMYT (2007) Global strategy for the ex situ conservation with enhanced access to wheat, rye and triticale. International Maize and Wheat Improvement Center, Mexico. Available from: http://www.croptrust.org/documents/cropstrategies/Wheat%20Strategy.pdf. Accessed 7 Aug 2014

  • Davari A, Khoshbakht K, Ghalegolab Behbahani A, Veisi H (2013) A qualitative assessment of diversity and factors leading to genetic erosion of vegetables: a case study of Varamin (Iran). Int J AgriSci 3(3):198–212

    Google Scholar 

  • De Oliveira LO, Martins ER (2002) A quantitative assessment of genetic erosion in ipecac (Psychotria ipecacuanha). Genet Resour Crop Evol 49:607–617

    Article  Google Scholar 

  • Del Rio AH, Bamberg JB, Huaman Z, Salas A, Vega SE (1997) Assessing changes in the genetic diversity of potato gene banks. 2. In situ vs ex situ. Theor Appl Genet 95:199–204

    Article  Google Scholar 

  • Deu M, Sagnard F, Chantereau J et al (2008) Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers. Theor Appl Genet 116:903–913

    Article  CAS  PubMed  Google Scholar 

  • Deu M, Sagnard F, Chantereau J et al (2010) Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger. Theor Appl Genet 120(7):1301–1313

    Article  PubMed  Google Scholar 

  • Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100(6):912–917

    Article  Google Scholar 

  • Dosmann M, Groover A (2012) The importance of living botanical collections for plant biology and the “next generation” of evo-devo research. Frontiers in plant science, vol 3 article 137. doi:10.3389/fpls.2012.00137

  • Dulloo ME, Fiorino E, Thormann I (2015) Research on conservation and use of crop wild relatives. In: Yadav S, Redden R, Maxted N, Dulloo ME, Guarino L, Smith P (eds) Crop wild relatives and climate change (1st ed). Wiley, Hoboken

    Google Scholar 

  • Engels JMM (2001) Home gardens—a genetic resource perspective. In: Watson JW, Eyzaguirre PB (eds) Proceedings of the second international home garden workshop. Bioversity international, Rome, Italy, pp 3–9

    Google Scholar 

  • Engels JMM, Visser L (eds) (2003) A guide to effective management of germplasm collections handbooks for genebanks no. 6. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Enßlin A, Sandner TM, Matthies D (2011) Consequences of ex situ cultivation of plants: genetic diversity, fitness and adaptation of the monocarpic Cynoglossum officinale L. in botanic gardens. Biol Conserv 144(1):272–278

    Article  Google Scholar 

  • Esquinas-Alcazar JT (1993) Plant genetic resources. In: Hayward MD, Bosemark NO, Romagosa I (eds) Plant breeding: principles and prospects, Chapman & Hall, London, pp 33–51

    Google Scholar 

  • Eticha F, Sinebo W, Grausgruber H (2010) On-farm diversity and characterization of barley (Hordeum vulgare L.) landraces in the highlands of West Shewa Ethiopia. Ethnobotany Res Appl 8:025–034

    Article  Google Scholar 

  • FAO (1998) The state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2012) Second global plan of action for plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2013) Genebank standards for plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2014) Concept note on global networking on in situ conservation and on-farm management of plant genetic resources for food and agriculture. CGRFA/WG-PGR-7/14/inf-3. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Feld CK, Martins da Silva P, Sousa JP et al (2009) Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118:1862–1871

    Article  Google Scholar 

  • Fernando V, Thomas MP (1978) An assessment of the ecological implications of new varieties of seeds. Am J Environ Stud 12:289–293

    Article  Google Scholar 

  • Figliuolo G, Mazzeo M, Greco I (2007) Temporal variation of diversity in Italian durum wheat germplasm. Genet Resour Crop Evol 54:615–626

    Article  Google Scholar 

  • Ford-Lloyd BV, Brar D, Khush GS, Jackson MT, Virk PS (2009) Genetic erosion over time of rice landrace agrobiodiversity. Plant Genet Resour: Charact Utilization 7(02):163–168

    Article  CAS  Google Scholar 

  • Fowler C, Mooney P (1990) Shattering food, politics, and the loss of genetic diversity. The University of Arizona Press, Tucson

    Google Scholar 

  • Frankel OH (1970) Genetic conservation in perspective. In: Frankel OH, Bennett E (eds) Genetic resources in plants—their exploration and conservation, IPB handbook no. 11. International Biological Programme, London

    Google Scholar 

  • Frankel OH (1975) Genetic resources survey as a basis for exploration. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. International biological programme 2. Cambridge University Press

    Google Scholar 

  • Frankel OH, Bennett E (1970) Genetic resources—introduction. In: Frankel OH, Bennett E (eds) Genetic resources in plants—their exploration and conservation, IPB handbook no. 11. International Biological Programme, London, pp 7–18

    Google Scholar 

  • Frankel OH, Hawkes JG (1975) Genetic resources—the past ten years and the next. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. International biological programme 2. Cambridge University Press

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press

    Google Scholar 

  • Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. PNAS 104:1278–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franks SJ, Avise JC, Bradshaw WE et al (2008) The resurrection initiative: storing ancestral genotypes to capture evolution in action. Bioscience 58:870–873

    Article  Google Scholar 

  • Fu YB, Peterson GW, Richards KW et al (2005) Allelic reduction and genetic shift in the Canadian hard red spring wheat germplasm released from 1845 to 2004. Theor Appl Genet 110:1505–1516

    Article  PubMed  Google Scholar 

  • Fu YB, Peterson GW, Yu Ju-K, Gao L, Jia J, Richards KW (2006) Impact of plant breeding on genetic diversity of the Canadian hard red spring wheat germplasm as revealed by EST-derived SSR markers. Theor Appl Genet 112:1239–1247

    Article  CAS  PubMed  Google Scholar 

  • Gallagher RV, Hughes L, Leishman MR (2009) Phenological trends among Australian alpine species: using herbarium records to identify climate-change indicators. Aust J Bot 57:1–9

    Article  Google Scholar 

  • Galluzzi G, Eyzaguirre P, Negri V (2010) Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodivers Conserv 19:3635–3654

    Article  Google Scholar 

  • Gao L-z (2003) The conservation of Chinese rice biodiversity: genetic erosion, ethnobotany and prospects. Genet Resour Crop Evol 50:17–32

    Article  CAS  Google Scholar 

  • Gómez-Campo C (2006) Erosion of genetic resources within seed genebanks: the role of seed containers. Seed Sci Res 16(04):291–294

    Article  Google Scholar 

  • Goodrich WJ (1987) Monitoring genetic erosion: detection and assessment. IBPGR report no. 87/33. International Board for Plant Genetic Resources, Rome

    Google Scholar 

  • Guarino L (1995) Assessing the threat of genetic erosion. In Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity: technical guidelines. International Plant Genetic Resources Institute (IPGRI), Rome, Italy; plant production and protection division, FAO, Rome, Italy; World Conservation Union (IUCN), Gland, Switzerland; CABI Publishing, Wallingford

    Google Scholar 

  • Guarino L, Chadja H, Mokkadem A (1991) Wheat collecting in southern Algeria. Short communication. Rachis Newsl 1991:23–25

    Google Scholar 

  • Hagenblad J, Bostrom E, Jygards L, Leino MW (2014) Genetic diversity in local cultivars of garden pea (Pisum sativum L.) conserved ‘on farm’ and in historical collections. Genet Resour Crop Evol 61:413–422

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hajjar R, Jarvis DI, Gemmill-Herren B (2008) The utility of crop genetic diversity in maintaining ecosystem services. Agric Ecosyst Environ 123:261–270

    Article  Google Scholar 

  • Hammer K, Laghetti G (2005) Genetic erosion—examples from Italy. Genet Resour Crop Evol 52:629–634

    Article  Google Scholar 

  • Hammer K, Knuepffer H, Xhuveli L, Perrino P (1996) Estimating genetic erosion in landraces—two case studies. Genet Resour Crop Evol 43:329–336

    Article  Google Scholar 

  • Harlan JR (1970) Evolution of cultivated plants. In: Frankel OH, Bennett E (eds) Genetic resources in plants—IBP handbook no. 11. International Biological Programme, London, pp 19–32

    Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188:618–621

    Article  Google Scholar 

  • Harlan HV, Martini ML (1936) Problems and results in barley breeding. USDA yearbook of agriculture 1936:303–346

    Google Scholar 

  • Hawkes JG (1983) The diversity of crop plants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Heal G, Walker B, Levin S et al (2004) Genetic diversity and interdependent crop choices in agriculture. Resour Energy Econ 26(2):175–184

    Article  Google Scholar 

  • Hellin J, Bellon MR, Hearne SJ (2014) Maize landraces and adaptation to climate change in Mexico. J Crop Improv 28(4):484–501

    Article  Google Scholar 

  • Heywood VH, Dulloo ME (2006) In situ conservation of wild plant species—a critical global review of good practices. IPGRI technical bulletin no. 11. IPGRI, Rome

    Google Scholar 

  • Heywood VH, Kell SP, Maxted N (2008) Towards a global strategy for the conservation and use of crop wild relatives. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo JM, Dulloo E, Turok J (eds) Crop wild relative conservation and use. CAB International, Wallingford, pp 653–662

    Google Scholar 

  • Hirano R, Jatoi SA, Kawase M, Kikuchi A, Watanabe N (2009) Consequences of ex situ conservation on the genetic integrity of germplasm held at different gene banks: a case study of bread wheat collected in Pakistan. Crop Sci 49:2160–2166

    Article  CAS  Google Scholar 

  • Hoban S, Arntzen JA, Bruford MW et al (2014) Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol Appl 7(9):984–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyt E (1988) Conserving the wild relatives of crops. IBPGR, IUCN, WWF, Rome and Gland

    Google Scholar 

  • Huang X-Q, Wolf M, Ganal MW, Orford S, Koebner RMD, Roeder MS (2007) Did modern plant breeding lead to genetic erosion in European winter wheat varieties? Crop Sci 47:343–349

    Article  CAS  Google Scholar 

  • Hughes CE, Govindarajulu R, Robertson A et al (2007) Serendipitous backyard hybridization and the origin of crops. Proc Natl Acad Sci 104:14389–14394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter D, Heywood VH (eds) (2011) Crop wild relatives: a manual of in situ conservation. Earthscan, London

    Google Scholar 

  • Hutchinson CF, Weiss E (1999) Remote sensing contribution to an early warning system for genetic erosion of agricultural crops. In: Serwinski J, Faberova I (eds) Proceedings of the technical meeting on the methodology of the FAO world information and early warning system on plant genetic resources, held at the Research Institute of Crop Production, Prague, Czech Republic 21–23 June 1999. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Hysing S-C, Saell T, Nyborn H et al (2008) Temporal diversity changes among 198 Nordic bread wheat landraces and cultivars detected by retrotransposon-based S-SAP analysis. Plant Genet Resour: Charact Utilization 6(2):113–125

    Article  CAS  Google Scholar 

  • INIBAP (2006) Global conservation strategy for Musa (Banana and Plantain). International Network for the Improvement of Banana and Plantain, Montpellier

    Google Scholar 

  • Jarvis A, Ferguson ME, Williams DE et al (2003) Biogeography of wild Arachis: assessing conservation status and setting future priorities. Crop Sci 43:1100–1108

    Article  Google Scholar 

  • Jarvis A, Lane A, Hijmans RJ (2008a) The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126:12–23

    Article  Google Scholar 

  • Jarvis DI, Brown AHD, Cuong HP et al (2008b) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. PNAS 105(14):5326–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis DI, Hodgkin T, Sthapit BR, Fadda C, Lopez-Noriega I (2011) An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Crit Rev Plant Sci 30(1–2):125–176

    Article  Google Scholar 

  • Jarvis DI, Hodgkin T, Brown AHD et al (2016) Crop genetic diversity in the field and on the farm; principles and applications in research practices. Yale University Press

    Google Scholar 

  • Jorge MA, Claessens G, Hanson J et al (2010) Knowledge sharing on best practices for managing crop genebanks. Agric Inf Worldwide 3(2):101–106

    Google Scholar 

  • Keiša A, Maxted N, Ford-Lloyd BV (2008) The assessment of biodiversity loss over time: wild legumes in Syria. Genet Resour Crop Evol 55(4):603–612

    Article  Google Scholar 

  • Khan IA, Awan FS, Ahmad A, Fu YB, Iqbal A (2005) Genetic diversity of Pakistan wheat germplasm as revealed by RAPD markers. Genet Resour Crop Evol 52:239–244

    Article  CAS  Google Scholar 

  • Khlestkina EK, Huang XQ, Quenum FJ-B, Chebotar S, Roeder MS, Boerner A (2004) Genetic diversity in cultivated plants—loss or stability? Theor Appl Genet 108:1466–1472

    Article  CAS  PubMed  Google Scholar 

  • Khoury C, Laliberte B, Guarino L (2010) Trends in ex situ conservation of plant genetic resources: a review of global crop and regional conservation strategies. Genet Resour Crop Evol 57:625–639

    Article  Google Scholar 

  • Kiambi D, Ford-Lloyd B, Jackson MT, Guarino L, Maxted N, Newbury HJ (2005) Collection of wild rice (Oryza L.) in east and southern Africa in response to genetic erosion. Plant Genetic Resour Newsl 142:10–20

    Google Scholar 

  • Kiang YT, Antonovics J, Wu L (1977) The extinction of wild rice (0ryza perennis formosana) in Taiwan. J Asia Ecol 1:1–9

    Google Scholar 

  • Koebner RMD, Donini P, Reeves JC, Cooke RJ, Law JR (2003) Temporal flux in the morphological and molecular diversity of UK barley. Theor Appl Genet 106:550–558

    Article  CAS  PubMed  Google Scholar 

  • Kolodinska-Brantestam A (2004) A century of breeding—is genetic erosion a reality? Temporal diversity changes in Nordic and Baltic barley. Dissertation, Swedish University of Agricultural Sciences

    Google Scholar 

  • Kombo GR, Dansi A, Loko LY et al (2012) Diversity of cassava (Manihot esculenta Crantz) cultivars and its management in the department of Bouenza in the Republic of Congo. Genet Resour Crop Evol 59(8):1789–1803

    Article  Google Scholar 

  • Kushalappa AC, Eskes AB (eds) (1989) Coffee rust: epidemiology, resistance and management. CRC Press. ISBN 978-0849368998

    Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major genepools of common bean (Phaseolus vulgaris, Fabaceae). Theor Appl Genet 118:979–992

    Article  CAS  PubMed  Google Scholar 

  • Laghetti G, Fiorentin G, Hammer K, Pignone D (2009) On the trail of the last autochthonous Italian einkorn (Triticum monococcum L.) and emmer (Triticum dicoccon Schrank) populations: a mission impossible? Genet Resour Crop Evol 56(8):1163–1170

    Article  Google Scholar 

  • Laikre L (2010) Genetic diversity is overlooked in international conservation policy implementation. Conserv Genet 11:349–354

    Article  Google Scholar 

  • Lauterbach D, Burkart M, Gemeinholzer B (2012) Rapid genetic differentiation between ex situ and their in situ source populations an example of the endangered Silene otites. Bot J Linn Soc 168:64–75

    Article  Google Scholar 

  • Le Clerc V, Bazante F, Baril C, Guiard J, Zhang D (2005) Assessing temporal change in genetic diversity of maize varieties using microsatellite markers. Theor Appl Genet 110:294–302

    Article  PubMed  CAS  Google Scholar 

  • Le Clerc V, Cadot V, Canadas M, Lallemand J, Guerin D, Boulineau F (2006) Indicators to assess temporal genetic diversity in the French Catalogue: no losses for maize and peas. Theor Appl Genet 113:1197–1209

    Article  PubMed  Google Scholar 

  • Li Z, Wu N, Gao X, Wu Y, Oli KP (2013) Species-level phonological responses to ‘global warming’ as evidenced by herbarium collections in the Tibetan autonomous region. Biodivers Cons 22:141–152

    Article  Google Scholar 

  • Lohar DP, Rana RB (1998) The dichotomy of crop diversity management issues in subsistence and commercial hill farming systems in Nepal. In: Tej Pratap, Sthapit B (eds.) Managing agrobiodiversity-farmers’ changing perspectives and institutional responses in the Hindu-Kush-Himalayan region. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal and International Plant Genetic Resources Institute (IPGRI) Rome, pp 183–197

    Google Scholar 

  • Louette D, Smale M (2000) Farmers’ seed selection practices and traditional maize varieties in Cuzalapa, Mexico. Euphytica 113:25–41

    Article  Google Scholar 

  • Malysheva-Otto L, Ganal MW, Law JR, Reeves JC, Roeder MS (2007) Temporal trends of genetic diversity in European barley cultivars (Hordeum vulgare L.). Mol Breed 20:309–322

    Article  Google Scholar 

  • Manifesto MM, Schlatter AR, Hopp HE, Sua´rez EY, Dubcovsky J (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci 41:682–690

    Article  CAS  Google Scholar 

  • Mantegazza R, Biloni M, Grassi F et al (2008) Temporal trends of variation in Italian rice germplasm over the past two centuries revealed by AFLP and SSR markers. Crop Sci 48:1832–1840

    Article  CAS  Google Scholar 

  • Marshall DR (1989) Crop genetic resources: current and emerging issues. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant populations, genetics, breeding, and genetic resources. Sinauer Associates Inc, USA

    Google Scholar 

  • Martos V, Royo C, Rharrabti Y, Garcia del Moral LF (2005) Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Field Crops Res 91:107–116

    Article  Google Scholar 

  • Maxted N, Guarino L (2006) Genetic erosion and genetic pollution of crop wild relatives In: Ford-Lloyd BV, Dias SR, Bettencourt E (eds) Genetic erosion and pollution assessment methodologies. Proceedings of PGR forum workshop 5, Terceira Island, autonomous region of the azores, Portugal, 8–11 September 2004. Published on behalf of the European Crop Wild Relative Diversity Assessment and Conservation Forum, by Bioversity International, Rome, pp 35–46

    Google Scholar 

  • Maxted N, Kell SP (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. FAO Commission on Genetic Resources for Food and Agriculture, Rome 266 pp

    Google Scholar 

  • Maxted N, Guarino L, Myer L, Chiwona EA (2002) Towards a methodology for on-farm conservation of plant genetic resources. Genet Resour Crop Evol 49:31–46

    Article  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Jury SL, Kell SP, Scholten MA (2006) Towards a definition of a crop wild relative. Biodivers Conserv 15:2673–2685

    Article  Google Scholar 

  • Maxted N, Dulloo ME, Ford-Lloyd BV et al (2012) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Maxted N, Magos Brehm J, Kell S (2013) Resource book for preparation of national conservation plans for crop wild relatives and landraces. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • McCouch S, Baute GJ, Bradeen J et al (2013) Feeding the future. Nature 499:23–24

    Article  CAS  PubMed  Google Scholar 

  • Megersa G (2014) Genetic erosion of barley in North Shewa Zone of Oromiya Region, Ethiopia. Int J Biodivers Conserv 6(3):280–289

    Article  Google Scholar 

  • Mekbib F (2008) Genetic erosion of sorghum (Sorghum bicolor (L.) Moench) in the centre of diversity, Ethiopia. Genet Resour Crop Evol 55:351–364

    Article  Google Scholar 

  • Mendenhall CD, Daily GC, Ehrlich PR (2012) Improving estimates of biodiversity loss. Biol Conserv 151:32–34

    Article  Google Scholar 

  • Miller-Rushing AJ, Primack RB, Primack D, Mukunda S (2006) Photographs and herbarium specimens as tools to document phonological changes in response to global warming. Am J Bot 93:1667–1674

    Article  PubMed  Google Scholar 

  • Mir RR, Kumar J, Balyan HS, Gupta PK (2012) A study of genetic diversity among Indian bread wheat (Triticum aestivum L.) cultivars released during last 100 years. Genet Resour Crop Evol 59:717–726

    Article  CAS  Google Scholar 

  • Mora A, Zapata Ferrufino B, Hunter D, et al (2009) Libro Rojo de parientes silvestres de cultivos de Bolivia. Plural editors,. Ministerio de Medio Ambiente y Agua Viceministerio de Medio Ambiente, Biodiversidad y Cambios Climáticos La Paz, Bolivia, Bioversity International, Rome

    Google Scholar 

  • Morishima H, Oka HI (1995) Genetic erosion in wild and cultivated rice species. Rice genetics newsletter 12:168–170. National Institute of Genetics, Japan

    Google Scholar 

  • Myers N (1988) Draining the gene pool: the causes, course and consequences of genetic erosion. In: Kloppenburg JR Jr (ed) Seeds and sovereignty. The use and control of plant genetic resources. Duke University Press, Durham

    Google Scholar 

  • NAS (1972) Genetic vulnerability of major crops. National Academy of Sciences, Washington

    Google Scholar 

  • Negri V (2003) Landraces in central Italy: where and why they are conserved and perspectives for their on-farm conservation. Genet Resour Crop Evol 50:871–885

    Article  Google Scholar 

  • Nersting LG, Andersen SB, von Bothmer R, Gullord M, Jorgensen RB (2006) Morphological and molecular diversity of Nordic oat through one hundred years of breedin. Euphytica 150:327–337

    Article  Google Scholar 

  • Nevo E, Fu YB, Pavlicek T, Khalifa S, Tavasi M, Beiles A (2012) Evolution of wild cereals during 28 years of global warming in Israel. PNAS 109(9):3412–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton AC, Akar T, Baresel JP et al (2010) Cereal landraces for sustainable agriculture. A review. Agron Sustain Dev 30:237–269

    Article  Google Scholar 

  • Ochoa CM (1975) Potato collecting expeditions in Chile, Bolivia and Peru, and the genetic erosion of indigenous cultivars. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. International Biological Programme 2. Cambridge University Press, pp 167–173

    Google Scholar 

  • Ortega R (1997) Peruvian in situ conservation of Andean crops. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman and Hall, London, pp 302–314

    Google Scholar 

  • Ortega-Paczka O (1999) Genetic erosion in Mexico. In: Serwinski J, Faberova I (eds) Proceedings of the technical meeting on the methodology of the FAO world information and early warning system on plant genetic resources, held at the Research Institute of Crop Production, Prague, Czech Republic 21–23 June 1999. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Padulosi S, Bergamini N, Lawrence T, eds (2012) On farm conservation of neglected and underutilized species: status, trends and novel approaches to cope with climate change. In: Proceedings of an international conference, Frankfurt, 14–16 June, 2011. Bioversity International, Rome

    Google Scholar 

  • Perales H, Brush SB, Qualset CO (2003) Landraces of maize in Central Mexico: an altitudinal transect. Econ Bot 57:7–20

    Article  Google Scholar 

  • Pereira HM, Ferrier S, Walters M et al (2013) Essential biodiversity variables. Science 339:277–278

    Article  CAS  PubMed  Google Scholar 

  • Peroni N, Hanazaki N (2002) Current and lost diversity of cultivated varieties, especially cassava, under swidden cultivation systems in the Brazilian Atlantic Forest. Agric Ecosyst Environ 92:171–183

    Article  Google Scholar 

  • Piergiovanni AR (2000) The evolution of lentil (Lens culinaris Medik.) cultivation in Italy and its effects on the survival of autochthonous populations. Genet Resour Crop Evol 47:305–314

    Article  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R et al (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344(6187). doi:10.1126/science.1246752

  • Primack D, Imbres C, Primack RB, Miller-Rushing AJ, Tredici PD (2004) Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. Am J Bot 91:1260–1264

    Article  PubMed  Google Scholar 

  • Qi Y, Zhang D, Wang M et al (2006) Genetic diversity of rice cultivars (Oryza sativa L.) in China and the temporal trends in recent fifty years. Chin Sci Bull 51(6):681–688

    Article  CAS  Google Scholar 

  • Qualset CO, Damania AB, Zanatta ACA, Brush SB (1997) Locally based crop plant conservation. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman and Hall, London, pp 160–175

    Google Scholar 

  • Rao NK, Hanson J, Dulloo ME, Ghosh K, Nowell D, Larinde M (2006) Seed handling in genebanks. Handbook for genebanks no. 8. Bioversity International, Rome

    Google Scholar 

  • Reif J, Hamrit S, Heckenberger M et al (2005) Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theor Appl Genet 111:838–845

    Article  PubMed  Google Scholar 

  • Rocha F, Bettencourt E, Gaspar C (2008) Genetic erosion assessment through the re-collecting of crop germplasm. Counties of Arcos de Valdevez, Melgaço, Montalegre, Ponte da Barca and Terras de Bouro (Portugal). Plant Genet Resour Newsl 154:6–13

    Google Scholar 

  • Rogers DL (2004) Genetic erosion no longer just an agricultural issue. Native Plants J 5(2):112–122

    Article  Google Scholar 

  • Roussel V, Koenig J, Bechert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930

    Article  CAS  PubMed  Google Scholar 

  • Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170

    Article  CAS  PubMed  Google Scholar 

  • Rucinska A, Puchalski J (2011) Comparative molecular studies on the genetic diversity of an ex situ garden collection and its source population of the critically endangered polish endemic plant Cochlearia polonica E. Froehlich. Biodivers Conserv 20:401–413

    Article  Google Scholar 

  • Scarascia-Mugnozza GT, Perrino P (2002) The history of ex situ conservation and use of plant genetic resources. In: Brown AHD, Jackson MT, Engels JMM, Ramanatha Roa V (eds) Managing plant genetic diversity. CABI Publishing, Wallingford, pp 1–22

    Google Scholar 

  • Serwinski J, Faberova I (eds) (1999) Proceedings of the technical meeting on the methodology of the FAO world information and early warning system on plant genetic resources, held at the Research Institute of Crop Production, Prague, Czech Republic 21–23 June 1999. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • SGRP (2010) Global public goods project phase 2—final report. System-wide genetic resources programme (SGRP). Bioversity International, Rome

    Google Scholar 

  • Sharrock S (2012) Global strategy for plant conservation. A guide to the GSPC, all the targets, objectives and facts. Botanic Gardens Conservation International, UK

    Google Scholar 

  • Steele KA, Gyawali S, Joshi KD, Shrestha P, Sthapit BR, Witcombe JR (2009) Has the introduction of modern rice varieties changed rice genetic diversity in a high-altitude region of Nepal? Field Crops Res 113:24–30

    Article  Google Scholar 

  • Steiner AM, Ruckenbauer P, Goecke E (1997) Maintenance in genebanks, a case study: contaminations observed in the Nürnberg oats of 1831. Genet Resour Crop Evol 44:533–538

    Article  Google Scholar 

  • Synnevag G, Huvio T, Sidibe Y, Kanoute A (1999) Farmers’ indicators for decline and loss of local varieties from traditional farming systems. A case study from northern Mali. In: Serwinski J, Faberova I (eds) Proceedings of the technical meeting on the methodology of the FAO world information and early warning system on plant genetic resources, held at the Research Institute of Crop Production, Prague, Czech Republic 21–23 June 1999. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Tapia CB, Estrella JE (2001) Genetic erosion quantification in ullucus (Ullucus tuberosus Caldas), oca (Oxalis tuberosa Mol.) and mashua (Tropaeolum tuberosum R.&P.) in agroecosystems of the provinces of Canar, Chimborazo and Tungurahua—Ecuador. Abstract presented at the international symposium “Managing biodiversity in agricultural ecosystems. Montreal, Canada, 8–10 September 2001

    Google Scholar 

  • Teklu Y, Hammer K (2006) Farmers’ perception and genetic erosion of Ethiopian tetraploid wheat landraces. Genet Resour Crop Evol 53:1099–1113

    Article  Google Scholar 

  • Thormann I, Dulloo ME (2015) Assessing temporal variation in crop wild relative genetic diversity based on past collecting missions. Acta Hortic

    Google Scholar 

  • Thormann I, Gaisberger H, Mattei F, Snook L, Arnaud E (2012) Digitization and online availability of original collecting mission data to improve data quality and enhance the conservation and use of plant genetic resources. Genet Resour Crop Evol 59(5):635–644

    Article  Google Scholar 

  • Thormann I, Yang Qiu, Allender C et al (2013) Development of best practices for ex situ conservation of radish germplasm in the context of the crop genebank knowledge base. Genet Resour Crop Evol 60(4):1251–1262

    Article  CAS  Google Scholar 

  • Thormann I, Fiorino E, Halewood M, Engels JMM (2015) Plant genetic resources collections and associated information as baseline resource for genetic diversity studies—an assessment of the IBPGR supported collections. Genet Resour Crop Evol. doi:10.1007/s10722-015-0231-9

  • Thrupp LA (1998) Cultivating diversity: agrobiodiversity and food security. World Resources Institute, Washington

    Google Scholar 

  • Tittensor DP, Walpole M, Hill SLL et al (2014) A mid-term analysis of progress toward international biodiversity targets. Science 346(6206):241–244

    Article  CAS  PubMed  Google Scholar 

  • Tsegaye B, Berg T (2007) Genetic erosion of Ethiopian tetraploid wheat landraces in Eastern Shewa, Central Ethiopia. Genet Resour Crop Evol 54(4):715–726

    Article  Google Scholar 

  • Van de Wouw M, van Hintum T, Kik C, van Treuren R, Visser B (2010) Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theor Appl Genet 120:1241–1252

    Article  PubMed  PubMed Central  Google Scholar 

  • van Heerwaarden J, Hellin J, Visser RF, van Eeuwijk FA (2009) Estimating maize genetic erosion in modernized smallholder agriculture. Theor Appl Genet 119(5):875–888

    Article  PubMed  PubMed Central  Google Scholar 

  • Vellend M, Brown CD, Kharouba HM, Mccune JI, Myers-Smith IH (2013) Historical ecology: using unconventional data sources to test for effects of global environmental change. Am J Bot 100(7):1294–1305

    Article  PubMed  Google Scholar 

  • Vigouroux Y, Mariac C, De Mita S et al (2011) Selection for earlier flowering crop associated with climatic variations in the Sahel. PLoS ONE 6(5):1–9

    Article  CAS  Google Scholar 

  • Wandeler P, Hoeck PEA, Keller KF (2007) Back to the future: museum specimens in population genetics. Trends Ecol Evol 22(12):634–642

    Article  PubMed  Google Scholar 

  • Wei X, Yan X, Yu H, Wang Y, Xu Q, Tank S (2009) Temporal changes in SSR allelic diversity of major rice cultivars in China. J Genet Genomics 36:363–370

    Article  CAS  PubMed  Google Scholar 

  • Weltzien E, Rattunde HFW, Clerget B, Siart S, Toure A, Sagnard F (2006) Sorghum diversity and adaptation to drought in West Africa. In: Jarvis D, Mar I, Sears L (eds) Enhancing the use of crop genetic diversity to manage abiotic stress in agricultural production systems 23–27 May, Budapest, Hungary. International Plant Genetic Resources Institute, Rome, pp 31–38

    Google Scholar 

  • Whitney LD, Bowers FAI, Takahashi M (1939) Taro varieties in Hawaii. Hawaii Agri Exp Station Bull 84:1–86

    Google Scholar 

  • Wilkes HG, Wilkes KK (1972) The green revolution. Environment 14:32–39

    Google Scholar 

  • Wood D, Lenne JM (1997) The conservation of agrobiodiversity on-farm: questioning the emerging paradigm. Biodivers Conserv 6:106–120

    Article  Google Scholar 

  • Worede M (1997) Ethiopian in situ conservation. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman and Hall, London, pp 290–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imke Thormann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thormann, I., Engels, J.M.M. (2015). Genetic Diversity and Erosion—A Global Perspective. In: Ahuja, M., Jain, S. (eds) Genetic Diversity and Erosion in Plants. Sustainable Development and Biodiversity, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-25637-5_10

Download citation

Publish with us

Policies and ethics