Quark ACM with Massive Gluon

  • Ishita Dutta ChoudhuryEmail author
  • Amitabha Lahiri
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 174)


We calculate the effect of a small gauge-invariant mass of the gluon on anomalous chromomagnetic moment (ACM) of quarks at one loop order. We use perturbation theory to compute this form factor at an energy equal to the mass of Z-boson. We find that the gluon mass dependence is more evident for the light quarks while heavy quark like top shows almost no effect. Our calculation is relevant for dynamical mass generation mechanism and Curci-Ferrari model while topological mass generation mechnism has additional diagrams not considered here.


Heavy Quark Light Quark Gluon Propagator Strong Coupling Constant Gluon Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.C. Aguilar, D. Binosi, J. Papavassiliou, Dynamical equation of the effective gluon mass. Phys. Rev. D 84, 085026 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    A.C. Aguilar, D. Binosi, J. Papavassiliou, Gluon mass generation in the presence of dynamical quarks. Phys. Rev. D 84, 074010 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    T.J. Allen, M.J. Bowick, A. Lahiri, Topological mass generation in (3+1)-dimensions. Mod. Phys. Lett. A 6, 559 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    R. Alkofer, L.V. Smekal, The infrared behaviour of QCD Green’s functions : confinement, dynamical symmetry breaking, and hadrons as relativistic bound states. Phys. Rept. 353, 281 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Beringer et al., (Particle Data Group Collaboration), (2012 and, partial update for the 2014 edition). Rev. Particle Phys. (RPP). Phys. Rev. D 86, 010001 (2013)Google Scholar
  6. 6.
    CMS Collaboration, Search for anomalous top chromomagnetic dipole moments from angular distributions in \(t\bar{t}\) TeV with the CMS detector. CMS-PAS-TOP-14-005 (2014)Google Scholar
  7. 7.
    J.M. Cornwall, Dynamical mass generation in continuum QCD. Phys. Rev. D 26, 1453 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    G. Curci, R. Ferrari, On a class of lagrangian models for massive and massless yang-mills fields. Nuovo Cim. A 32, 151 (1976)ADSCrossRefGoogle Scholar
  9. 9.
    J.H. Field, A phenomenological analysis of gluon mass effects in inclusive radiative decays of the J/psi and Upsilon. Phys. Rev. D 66, 013013 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Hioki, K. Ohkuma, Search for anomalous top-gluon couplings at LHC revisited. Eur. Phys. J. C 65, 127 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Hioki, K. Ohkuma, Addendum to: search for anomalous top-gluon couplings at LHC revisited. Eur. Phys. J. C 71, 1535 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Hioki, K. Ohkuma, Latest constraint on nonstandard top-gluon couplings at hadron colliders and its future prospect. Phys. Rev. D 88(1), 017503 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    J.F. Kamenik, M. Papucci, A. Weiler, Constraining the dipole moments of the top quark. Phys. Rev. D 85, 071501 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    R. Martínez, J.A. Rodríguez, Using the radiative decay \(b \rightarrow s \gamma \) to bound the chromomagnetic dipole moment of the top quark. Phys. Rev. D 55, 3212 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    R. Martínez, J.A. Rodríguez, The Anomalous chromomagnetic dipole moment of the top quark. Phys. Rev. D 65, 057301 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.S N Bose National Centre for Basic SciencesKolkataIndia

Personalised recommendations