Skip to main content

Cellular Plasticity, Cancer Stem Cells, and Cells-of-Origin

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Cancer Research ((BRIEFSCANCER))

Abstract

It is now recognized that tumor cells share similarities to stem cells in that they do not have a strong sense of functional identity. In the case of the skin, a mature cell that becomes stem-like no longer has the identity of a skin cell, meaning it changes shape and behaves in ways that make it not fit in with its normal skin cell neighbors. Accompanying these changes in behavior are changes in which genes are transcribed or repressed. This is why the transcriptome of cancer cells or cancer stem cells often share many similarities with the transcriptome of embryonic or adult stem cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Brabletz, T. (2012). EMT and MET in metastasis: Where are the cancer stem cells? Cancer Cell, 22, 699–701.

    Article  CAS  PubMed  Google Scholar 

  • Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., et al. (2011). Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America, 108, 7950–7955.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi, T. Y., Ninov, N., Stainier, D. Y., & Shin, D. (2014). Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology, 146, 776–788.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crosetto, N., Bienko, M., & van Oudenaarden, A. (2015). Spatially resolved transcriptomics and beyond. Nature Reviews Genetics, 16, 57–66.

    Article  CAS  PubMed  Google Scholar 

  • Dorrell, C., Erker, L., Schug, J., Kopp, J. L., Canaday, P. S., Fox, A. J., et al. (2011). Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes and Development, 25, 1193–1203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huch, M., Dorrell, C., Boj, S. F., van Es, J. H., Li, V. S., van de Wetering, M., et al. (2013). In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 494, 247–250.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klevebring, D., Rosin, G., Ma, R., Lindberg, J., Czene, K., Kere, J., et al. (2014). Sequencing of breast cancer stem cell populations indicates a dynamic conversion between differentiation states in vivo. Breast Cancer Research, 16, R72.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lazova, R., Laberge, G. S., Duvall, E., Spoelstra, N., Klump, V., Sznol, M., et al. (2013). A melanoma brain metastasis with a donor-patient hybrid genome following bone marrow transplantation: First evidence for fusion in human cancer. PLoS One, 8, e66731.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melo, S. A., Sugimoto, H., O’Connell, J. T., Kato, N., Villanueva, A., Vidal, A., et al. (2014). Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell, 26, 707–721.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santoni-Rugiu, E., Jelnes, P., Thorgeirsson, S. S., & Bisgaard, H. C. (2005). Progenitor cells in liver regeneration: Molecular responses controlling their activation and expansion. APMIS (Acta Pathologica, Microbiologica et Immunologica Scandinavica), 113, 876–902.

    Article  Google Scholar 

  • Sharma, N., Seftor, R. E., Seftor, E. A., Gruman, L. M., Heidger, P. M., Jr., Cohen, M. B., et al. (2002). Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: Role in vasculogenic mimicry. The Prostate, 50, 189–201.

    Article  PubMed  Google Scholar 

  • Singh, R., Pochampally, R., Watabe, K., Lu, Z., & Mo, Y. Y. (2014). Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Molecular Cancer, 13, 256.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Terada, N., Hamazaki, T., Oka, M., Hoki, M., Mastalerz, D. M., Nakano, Y., et al. (2002). Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 416, 542–545.

    Article  CAS  PubMed  Google Scholar 

  • Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469, 314–322.

    Article  CAS  PubMed  Google Scholar 

  • White, A. C., & Lowry, W. E. (2015). Refining the role for adult stem cells as cancer cells of origin. Trends in Cell Biology, 25, 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Wurmser, A. E., & Gage, F. H. (2002). Stem cells: Cell fusion causes confusion. Nature, 416, 485–487.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Chen, J., Su, F., Yu, B., Su, F., Lin, L., et al. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer, 10, 117.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ying, Q. L., Nichols, J., Evans, E. P., & Smith, A. G. (2002). Changing potency by spontaneous fusion. Nature, 416, 545–548.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nguyen, D.H. (2016). Cellular Plasticity, Cancer Stem Cells, and Cells-of-Origin. In: Systems Biology of Tumor Physiology. SpringerBriefs in Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-25601-6_2

Download citation

Publish with us

Policies and ethics