Skip to main content

SOFC Technology: Its Working and Components

  • Chapter
  • First Online:
Solid Oxide Fuel Cell Components

Abstract

Till now, we have discussed all other types of fuel cells, i.e., their components, performance and applications. In this chapter, the prime focus is on the solid oxide fuel cell (SOFC) technology its working principle, components and configurations. Baur and Preis (1937) presented the concept of large-scale SOFC for stationary applications. The tubular design of SOFC technology developed by Siemens Westinghouse is running successfully, whereas the planar design has also achieved higher volumetric power densities. The following sections deal with the basics of SOFC technology followed by the most commonly used designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Baur E, Preis H (1937) ZElektrochem 43:727

    Google Scholar 

  • Brown JT (1989) Solid oxide fuel cells. In: Takahashi T (ed) High conductivity solid ionic conductors. World Scientific, Singapore

    Google Scholar 

  • Fergus JW (2004) Solid State Ionics 171:1

    Google Scholar 

  • Jiang SP, Chan SH (2004) J Mater Sci 39:4405

    Google Scholar 

  • Jiang SP (2008) J Mater Sci 43:6799

    Google Scholar 

  • Kiukkola K, Wagner C (1957) Electrockem Soc 104:379

    Google Scholar 

  • Primdahl S, Mogensen M (2002) Solid State Ionics 152–153:597

    Google Scholar 

  • Taninouchi Y (2010) High Oxide-Ion conductivity and phase transition of doped bismuth vanadate. Kyoto University

    Google Scholar 

  • Nernst W (1899) US Patent 685 730,1899

    Google Scholar 

  • Zhen YD, Jiang SP (2006) J Electrochem Soc 153:A2245

    Google Scholar 

Suggested Bibliography

  • Abrahmas I, Krok F (2002) J Mater Chem 12:3351

    Google Scholar 

  • Abrahmas I, Krok F (2003) Solid State Ionics 157:139

    Article  Google Scholar 

  • Bastidas DM (2006) Rev Metal 42(6):425

    Google Scholar 

  • Baur E, Preis H (1938) 2. Elektrochem 44:695

    Google Scholar 

  • Berger D, Jitaru I, Stanica N, Perego R, Schoonman J (2001) J Mater Synth Process 9(3):137

    Google Scholar 

  • Binder H, Kohling A, Krupp H, Richter IC, Sandstede G (1963) Electrochim Acta 8:781

    Google Scholar 

  • Chen XJ, Chan SH, Khor KA (2004) Electrochem Solid-State Lett 7:A144

    Google Scholar 

  • Cook RL, MacDuff RC, Sammells AF (1990) J Electrochem Soc 137:3309

    Google Scholar 

  • Demin A, Tsiakaras P (2001) Int J Hydrogen Energy 26:1103

    Article  Google Scholar 

  • Dygas JR, Krok F, Bogusz W, Kurek P, Reiselhuber K, Brietter MW (1994) Solid State Ionics 70–71:239

    Article  Google Scholar 

  • Eguchi K, Setoguchi T, Okamoto K, Arai H (1992) In: Proceedings of the international fuel cell conference, Makihari, Japan, p 373

    Google Scholar 

  • Faro ML, La Rosa D, Antonucci V, Arico A (2009) J Indian Inst Sci 89, 4 Oct–Dec 2009

    Google Scholar 

  • Fisher CAJ, Islam MS (1999) Solid State Ionics 118:355

    Google Scholar 

  • Goodenough JB, Manthiram A, Paranthaman M, Zhen YS (1992) Solid State Ionics 52:105

    Article  Google Scholar 

  • Haile SM (2003) Acta Mater 51:5981

    Google Scholar 

  • Hammouche A, Siebert E, Hammou A (1989) Mater Res Bull 24:367

    Google Scholar 

  • Herle JV, Seneviratne D, McEvoy AJ (1999) J Eur Ceram Soc 19:837

    Article  Google Scholar 

  • Hirschenhofer JH, Stauffer DB, Engleman RR, Klett MG (1998) Fuel cell handbook, 4th edn

    Google Scholar 

  • Holt A, Ahlgren E, Poulsen FW (1993) In: Singhal SC, Iwahara H (eds) SOFC-III, vol. 93–104. Electrochemical Society, Pennington, p 562

    Google Scholar 

  • Isenberg A, Pabst W, Sandstede G (1966) Oxydisches Kathodenmaterial fur galvanische Brennstoffzellen fur hohe Temperaturen. DE-P 1 5 71 991. Filed 22 Oct 1966

    Google Scholar 

  • Ishihara T, Matsuda H, Takita Y (1995) Solid State Ionics 79:147

    Google Scholar 

  • Iwahara H (1992) Bull Cerum Soc Jpn 27:112

    Google Scholar 

  • Iwahara H, Uchida H, Ono K, Ogaki K (1988) J Electrochem Soc 135:529

    Google Scholar 

  • Jiang SP, Wang W (2005) J Electrochem Soc 152:A1398

    Google Scholar 

  • Kamata H, Yonemura Y, Mizusaki J, Tagawa H, Naraya K, Sasamoto T (1995) J Phys Chem Solids 56:943

    Google Scholar 

  • Karim DP, Aldred AT (1979) Phys Rev B 20(6):2255

    Google Scholar 

  • Kingery WD, Pappis J, Doty ME, Hill DC (1959) J Am Ceram Soc 42:393

    Google Scholar 

  • Koc R, Anderson HU (1992) J Mater Sci 27:5477

    Google Scholar 

  • Koc R, Anderson HU, Howard SA (1989) Structural, sintering and electrical properties of the perovskite-type (La,Sr)(Cr,Mn)O3. In: Singhal SC (ed) Solid oxide fuel cells—The electrochemical proceeding, vol PV 89-11. The Electrochemical Society, Pennington, pp 220–241

    Google Scholar 

  • Kuo JH, Anderson HU, Sparlin DM (1990) J Solid State Chem 87:55

    Google Scholar 

  • Larminie J, Dicks A (2003) Fuel cells system explained, second edition. Wiley, England

    Google Scholar 

  • Lee HY, Cho WS, Oh SM, Wiemhofer HD, Gopel W (1995) J Electrochem Soc 142:2659

    Google Scholar 

  • Li S, Lü Z, Wei B, Huang X, Miao J, Liu Z, Su W (2008) J Alloys Compd 448:116

    Google Scholar 

  • Lubke S, Wiemhofer H-D (1999) Solid State Ionics 117:229

    Article  Google Scholar 

  • Majewski P, Rozumek M, Aldinger F (2001) 1. Alloys Compds 329:253

    Google Scholar 

  • Middleton PH, Steiner HJ, Christie GM, Baker R, Metcalfe IS, Steele BCH (1993) In: Singhal SC, Iwahara H (eds) SOFC-III, vol 93–104. Electrochemical Society, Pennington, p 542

    Google Scholar 

  • Minh NQ, Horne CR (1993) High temperature electrochemical behaviour of fast iron and mixed conductors. In: Poulsen FW, Benzen JJ, Jacobsen T, Sltou E, Ostergard MJL (eds) Proceedings of the 24th R i s international symposium on materials science. Riser National Laboratory, Roskilde, Denmark, p 337

    Google Scholar 

  • Mizusaki J, Tagawa H, Naraya K, Sasamoto T (1991) Solid State Ionics 49:111

    Google Scholar 

  • Mizusaki J, Yasuda I, Shimoyama J, Yamauchi S, Fueki K (1993) J Electrochem Soc 140:467

    Article  Google Scholar 

  • Mori T, Drennan J, Lee J-H, Li J-G, Ikegami T (2002) Solid State Ionics 154–155:461

    Article  Google Scholar 

  • Murray EP, Barnett SA (2001) Solid State Ionics 143:265

    Google Scholar 

  • Palguyev SF, Volchenkova ZS (1958) Tr Inst Khim Akad Nauk SSSR, UraIFilial 2:183–200; C. A. 54:9542 i (1960)

    Google Scholar 

  • Pernot E, Anne M, Bacmann M, Stroble P, Fouletier J, Vannier RN, Mairesse G, Abraham F, Nowogrocki G (1994) Solid State Ionics 70–71:259

    Article  Google Scholar 

  • Peters H, Mobius H-H (1958a) Z Physik Chern 209:298

    Google Scholar 

  • Peters H, Mobius H-H (1958b) Z Physik Chem (Leipig) 209:298

    Google Scholar 

  • Peters H, Mobius H-H (1958c) Verfahren zur Gasanalyse bei erhohten Temperaturen mit Hilfe galvanischer Festelektrolytelemente, DDR-P 21673, filedMay 20

    Google Scholar 

  • Quadakkers WJ, Greiner H, Kock W (1994) In: Bossel U (ed) Proceedings of the 1st European SOFC forum, Switzerland, p 525

    Google Scholar 

  • Reynolds H (1902) Uber die Leitfahigkeit fester Mischungen bei hohen Temperaturen. Ein spezieller Fall der festen Losungen. Thesis, University of Gottingen

    Google Scholar 

  • Sammells AF, Cook RL, White JH, Osborne JJ, MacDuff RC (1992) Solid State Ionics 52:111

    Google Scholar 

  • Sarantaridis D, Atkinson A (2007) Fuel Cells. 7:246

    Google Scholar 

  • Schmalzried H (1962) Z Elektrochem Ber Bunsenges Physik Chem 66:572

    Google Scholar 

  • Schottky W, Veroff W (1935) Z Elektrockem, Bey Bunsenges Physik Chem 63:244

    Google Scholar 

  • Shannon RD (1976) Acta Crystallogr A 32:751

    Google Scholar 

  • Simner SP, Sandoval DS, Mackenzie JD, Dunn B (1997) J Am Cera Soc 80:2563

    Article  Google Scholar 

  • Simner SP, Hardy JS, Stevenson JW (2001) J Electrochem Soc 148(4):A351

    Google Scholar 

  • Simner SP, Bonnett JF, Canfield NL, Meinhardt KD, Shelton JP, Sprenkle VL, Stevenson JW (2003) J Power Sources 113:1

    Google Scholar 

  • Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricó AS, Gullo LR, La Rosa D, Siracusano S, Antonucci V, Oliva C, Ballabio O (2004) Solid State Ionics 175:361

    Article  Google Scholar 

  • Singhal SC, Kendall K (2000) High temperature solid-oxide fuel cells: fundamentals. Elsevier, New York

    Google Scholar 

  • Spacil HS, Tedmon CS (1969) J Electrochem Soc 116:1618

    Google Scholar 

  • Sun C, Hui R, Roller J (2010) J Solid State Electrochem 14:1125

    Google Scholar 

  • Takahashi T (1966) 1. Electrochem Soc 34:60

    Google Scholar 

  • Takahashi T, Iwahara H (1971) Energy Convers 11:105

    Google Scholar 

  • Takahashi T, Ito K, Iwahara M (1965) Rev Energ Primaire Journies Int d’Etude PiIesa Combustible, Bruxelles, vol 3, pp 42–48

    Google Scholar 

  • Tannenberger H (1962) Electrolyte solide pour piles a combustible. Swiss Patent 400 264, filed 23 Nov 1962

    Google Scholar 

  • Tannenberger H, Schachner H, Simm W (1962) Festelektrolytbrennstoffelement, DE-P 1 471 768, filed 22 May 1963; Swiss priority 23 May 1962

    Google Scholar 

  • Tao S, Irvine JTS (2002) J Solid State Chem 165:12

    Google Scholar 

  • Treadwell WD (1916) 2. Elektrochem 22:414

    Google Scholar 

  • Uchida H, Yoshida M, Watanabe M (1995) J Phys Chem 99:3282

    Google Scholar 

  • Uchida H, Suzuki H, Watanabe M (1998) J Electrochem Soc 145:615

    Google Scholar 

  • Webb JB, Sayer M, Mansingh A (1977) Can J Phys 55:1725

    Google Scholar 

  • Weber WJ, Griffin CW, Bates JL (1987) J Am Ceram Soc 70(4):265

    Google Scholar 

  • Weissbart J, Ruka RJ (1961) Rev Sci Instr 32:593

    Google Scholar 

  • Weissbart J, Ruka RJ (1962) 1. Electrochem Soc 109:723

    Google Scholar 

  • Yahiro H, Eguchi Y, Eguchi K, Arai H (1988a) J Appl Electrochem 18:527

    Article  Google Scholar 

  • Yahiro H, Ohuchi T, Eguchi K, Arai H (1988b) J Mater Sci 23:1036

    Article  Google Scholar 

  • Yamaji K, Horita T, Ishikawa M, Salrai N, Yokokawa H, Dolriya M (1997) Solid oxide fuel cells V. In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) The Electrochemical Society proceedings, Pennington, NJ, PV97–401, 301

    Google Scholar 

  • Yang YJ, Wen TL, Tu H, Wang DQ, Yang J (2000) Solid State Ionics 135(1–4):475

    Google Scholar 

  • Yasumoto K, Mori N, Mizusaki J, Tagawa H, Dokiya M (2001) J Electrochem Soc 148:A105

    Google Scholar 

  • Yasumoto K, Shiono M, Tagawa H, Dokiya M, Hirano K, Mizusaki J (2002) J Electrochem Soc 149:A531

    Google Scholar 

  • Yi JY, Choi GM (2004) J Eur Ceram Soc 24:1359

    Google Scholar 

  • Yokokawa H, Sakai N, Horita T, Yamaji K (2001) Fuel Cell 1:117

    Article  Google Scholar 

  • Yoshida H, Deguchi H, Miura K, Horiuchi M (2001) Solid State Ionics 140:191

    Article  Google Scholar 

  • Zhang GB, Smyth DM (1995) Solid State Ionics 82:153

    Article  Google Scholar 

  • Zhou W, Ran R, Shao Z (2009) J Power Sources 192:231

    Google Scholar 

  • Zhu WZ, Deevi SC (2002) Mater Sci Eng A 348(1–2):227

    Google Scholar 

  • Zhu WZ, Deevi SC (2003) Mater Sci Eng A 362:228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurbinder Kaur .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaur, G. (2016). SOFC Technology: Its Working and Components. In: Solid Oxide Fuel Cell Components. Springer, Cham. https://doi.org/10.1007/978-3-319-25598-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25598-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25596-5

  • Online ISBN: 978-3-319-25598-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics