Advertisement

Understanding Context with ContextViewer – Tool for Visualization and Initial Preprocessing of Mobile Sensors Data

  • Szymon Bobek
  • Sebastian Dziadzio
  • Paweł Jaciów
  • Mateusz Ślażyński
  • Grzegorz J. Nalepa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9405)

Abstract

Mobile context-aware systems are becoming more and more popular due to the rapid evolution of personal mobile devices. The variety of sensors that are available on such devices allow building intelligent applications that adapt automatically to user preferences and needs. Together with a growth of such self-adaptable systems, number of tools for collecting, visualising and modelling context were developed. However, there is still a need for tools and methods that will support building mobile context-aware systems at the very early stage of development. Such solutions should provide mechanisms for collecting, visualising and initial preprocessing of data to allow better understanding of processes, patterns and dynamics of mobile contextual data. In this paper we propose ContextViewer– a toolkit that aims at providing such mechanisms. It is a part of a methodology for building context-aware systems that besides ContextViewer includes also modelling methods and runtime environment for executing models.

References

  1. 1.
    Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Nalepa, G.J., Bobek, S.: Rule-based solution for context-aware reasoning on mobile devices. Comput. Sci. Inf. Syst. 11(1), 171–193 (2014)CrossRefGoogle Scholar
  3. 3.
    Gama, J.: Knowledge Discovery from Data Streams, 1st edn. Chapman & Hall/CRC, Boca Raton (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Atzmueller, M., Hilgenberg, K.: Towards capturing social interactions with sdcf: an extensible framework for mobile sensing and ubiquitous data collection. In: Proceedings of 4th International Workshop on Modeling Social Media. ACM Press (2013)Google Scholar
  5. 5.
    Bardram, J.E.: The java context awareness framework (JCAF) - a service infrastructure and programming framework for context-aware applications. In: Schmidt, A., Want, R., Gellersen, H.-W. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 98–115. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Woensel, W.V., Casteleyn, S., Troyer, O.D.: A Framework for Decentralized, Context-Aware Mobile Applications Using Semantic Web Technology (2009)Google Scholar
  7. 7.
    van Wissen, B., Palmer, N., Kemp, R., Kielmann, T., Bal, H.: ContextDroid: an expression-based context framework for android. In: Proceedings of PhoneSense 2010, November 2010Google Scholar
  8. 8.
    Dey, A.K.: Providing architectural support for building context-aware applications. Ph.D. thesis, Atlanta, GA, USA (2000). AAI9994400Google Scholar
  9. 9.
    Kramer, D., Kocurova, A., Oussena, S., Clark, T., Komisarczuk, P.: An extensible, self contained, layered approach to context acquisition. In: Proceedings of the Third International Workshop on Middleware for Pervasive Mobile and Embedded Computing. M-MPAC 2011, pp. 6:1–6:7. ACM, New York (2011)Google Scholar
  10. 10.
    Palmer, N., Kemp, R., Kielmann, T., Bal, H.: Swan-song: a flexible context expression language for smartphones. In: Proceedings of the Third International Workshop on Sensing Applications on Mobile Phones. PhoneSense 2012, pp. 12:1–12:5. ACM, New York (2012)Google Scholar
  11. 11.
    Bobek, S., Ślażyński, M., Nalepa, G.J.: Capturing dynamics of mobile context-aware systems with rules and statistical analysis of historical data. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 578–590. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  12. 12.
    Brezillon, P., Pasquier, L., Pomerol, J.C.: Reasoning with contextual graphs. Eur. J. Oper. Res. 136(2), 290–298 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Chen, H., Finin, T.W., Joshi, A.: Semantic web in the context broker architecture. In: PerCom, pp. 277–286. IEEE Computer Society (2004)Google Scholar
  14. 14.
    Ranganathan, A., McGrath, R.E., Campbell, R.H., Mickunas, M.D.: Use of ontologies in a pervasive computing environment. Knowl. Eng. Rev. 18(3), 209–220 (2003)CrossRefGoogle Scholar
  15. 15.
    Gu, T., Pung, H.K., Zhang, D.Q., Wang, X.H.: A middleware for building context-aware mobile services. In: Proceedings of IEEE Vehicular Technology Conference (VTC) (2004)Google Scholar
  16. 16.
    Chetan, S., Al-Muhtadi, J., Campbell, R., Mickunas, M.D.: Mobile gaia: a middleware for ad-hoc pervasive computing. In: Consumer Communications and Networking Conference, 2005. CCNC. 2005 Second IEEE, pp. 223–228. IEEE, January 2005Google Scholar
  17. 17.
    Floch, J., Fra, C., Fricke, R., Geihs, K., Wagner, M., Lorenzo, J., Soladana, E., Mehlhase, S., Paspallis, N., Rahnama, H., Ruiz, P., Scholz, U.: Playing music - building context-aware and self-adaptive mobile applications. Softw. Pract. Exp. 43(3), 359–388 (2013)CrossRefGoogle Scholar
  18. 18.
    van der Aalst, W.M., van Dongen, B.F., Günther, C.W., Mans, R., De Medeiros, A.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H., Weijters, A.: Prom 4.0: comprehensive support for real process analysis. In: Yakovlev, A., Kleijn, J. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  19. 19.
    Günther, C.W., Verbeek, H.: Xes-standard definition (2014)Google Scholar
  20. 20.
    Ligęza, A., Nalepa, G.J.: A study of methodological issues in design and development of rule-based systems: proposal of a new approach. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(2), 117–137 (2011)Google Scholar
  21. 21.
    Bobek, S., Nalepa, G.J., Ligęza, A., Adrian, W.T., Kaczor, K.: Mobile context-based framework for threat monitoring in urban environment with social threat monitor. Multimedia Tools and Appl. (2014)Google Scholar
  22. 22.
    Bobek, S., Nalepa, G.J.: Incomplete and uncertain data handling in context-aware rule-based systems with modified certainty factors algebra. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 157–167. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Szymon Bobek
    • 1
  • Sebastian Dziadzio
    • 1
  • Paweł Jaciów
    • 1
  • Mateusz Ślażyński
    • 1
  • Grzegorz J. Nalepa
    • 1
  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations