Skip to main content

The Optimal Control Theory

  • Chapter
  • First Online:
Flexible Spacecraft Dynamics, Control and Guidance

Part of the book series: Springer Aerospace Technology ((SAT))

  • 3586 Accesses

Abstract

The optimal control theory is the theoretical basis for the generation of control algorithms to reach and maintain the desired orbital and attitude reference trajectory . These algorithms need to have as input a partial or total information regarding the state of the system. In this chapter we will review the classic optimal control theory derived from the calculus of variations and then the so-called Maximum Principle. We introduce also the control theory applicable to linear systems and the study of the linear control synthesis methods, with particular focus on second order flexible mechanical systems and \(H_{\infty }\) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.E. Bryson, Y.C. Ho, Applied Optimal Control (Hemisphere Publishing Co., Washington, 1975)

    Google Scholar 

  2. G.D. Hull, Optimal Control Theory for Applications (Springer, New York, 2003)

    Book  MATH  Google Scholar 

  3. C. Bruni, G. Di Pillo, Metodi Variazionali per il controllo ottimo (Masson, Milano, 1993)

    Google Scholar 

  4. B. Chachuat, Non linear and dynamic optimization, from theory to practice, La-Teaching, 2007-001, Ecole Polytechnique Federale de Lausanne

    Google Scholar 

  5. H.J. Sussmann, Nonlinear Controllability and Optimal Control, Pure and Applied Mathematics (Marcel Dekker Inc., 1990)

    Google Scholar 

  6. G. Basile, G. Marro, Controlled and Conditioned Invariants in Linear System Theory (Prentice Hall, Englewood Cliffs, 1992)

    Google Scholar 

  7. B. Friedland, Control System Design (Mc Graw-Hill, Singapore, 1987)

    MATH  Google Scholar 

  8. A. Isidori, Sistemi di Controllo, vol. 2 (Siderea, Roma, 1993)

    Google Scholar 

  9. I. Postlethwaite, A.G.J. MacFarlane, A Complex Variable Approach to the Analysis of Linear Multivariable Feedback Systems, Lecture Notes in Control and Information Sciences (Springer, Berlin, 1979)

    Book  MATH  Google Scholar 

  10. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control-Analysis and Design (Wiley, Chichester, 2005)

    Google Scholar 

  11. D. Alazard, C. Cumer, P. Apkarian, M. Gauvrit, G. Ferreres, Robustesse et commande optimale, Cepadues Editions (1999)

    Google Scholar 

  12. J.C. Doyle, B.A. Francis, A.R. Tannenbaum, Feedback Control Theory (Macmillan Publishing Company, New York, 1992)

    Google Scholar 

  13. A. Stoorvogel, The H-infinity Control Problem: A State Space Approach (Prentice-Hall, New York, 1992)

    Google Scholar 

  14. K. Zhou, Essentials of Robust Control (Prentice Hall, New Jersey, 1998)

    Google Scholar 

  15. R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory. Trans. ASME J. Basic Eng. 86D(1), 95–108 (1961)

    Google Scholar 

  16. B.P. Gibbs, Advanced Kalman Filtering, Least-Squares and Modeling—A Practical Handbook (Wiley, Hoboken, 2011)

    Google Scholar 

  17. M. Fu, Lack of separation principle for quantized linear quadratic gaussian control. IEEE Trans. Autom. Control 57(9) (2012)

    Google Scholar 

  18. M. Maggiore, K.M. Passino, A separation principle for a class of non uniformly completely observable systems. IEEE Trans. Autom. Control 48(7) (2003)

    Google Scholar 

  19. M. Fu, On separation principle for linear quadratic control with input saturation, in Fifth World Congress on Intelligent Control and Automation (WCICA), vol. 6, pp. 5605–5607, 5–19 June 2004

    Google Scholar 

  20. T. Georgiou, A. Lindquist, The separation principle in stochastic control. IEEE Trans. Autom. Control 57(9) (2012)

    Google Scholar 

  21. I.M. Gelfand, S.V. Fomin, Calculus of Variations (Dover publications, New York, 2000)

    MATH  Google Scholar 

  22. F.H. Clarke, Maximum principles without differentiability. Bull. Am. Math. Soc. 81(1) (1975)

    Google Scholar 

  23. F.H. Clarke, M.R. de Pinho, The non smooth maximum principle. J. Control Cybern. 38(4A) (2009)

    Google Scholar 

  24. M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. P.C. Hughes, R.E. Skelton, Controllability and observability of linear matrix second-order systems. ASME J. Appl. Mech. 47, 415–424 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. S.M. Joshi, Control of Large Flexible Space Structures. Lecture Notes in Control and Information Sciences, vol. 131 (Springer, Berlin, 1989)

    Google Scholar 

  27. A.J. Laub, Controllability and observability criteria for multivariable linear second-order models. IEEE Trans. Autom. Control AC-29(2) (1984)

    Google Scholar 

  28. J.P. Sharma, R.K. George, Controllability of Matrix second order systems: a trigonometric based approach. Electron. J. Differ. Equ. 2007(80), 114 (2007)

    Google Scholar 

  29. S. Roman, Advanced Linear Algebra (Springer, New York, 2007)

    Google Scholar 

  30. P. Apkarian, M.N. Dao, D. Noll, Parametric robust structured control design. IEEE Trans. Autom. Control. doi:10.1109/TAC.2015.2396644

    Google Scholar 

  31. P. Apkarian, D. Noll, Nonsmooth \(H_{\infty }\) synthesis. IEEE Trans. Autom. Control 51(1) (2006)

    Google Scholar 

  32. S. Boyd, C.A. Desoer, Subharmonic functions and performance bounds on linear time invariant feedback systems. IMA J. Math. Control Inf. 2, 153–170 (1985)

    Article  Google Scholar 

  33. N. Fezans, D. Alazard, N. Imbert, B. Carpentier, \(H_{\infty }\) control design for generalized second order systems based on acceleration sensitivity function, in 16th Mediterranean Conference on Control and Automation, Ajaccio (France), 25–27 June 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Mazzini .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mazzini, L. (2016). The Optimal Control Theory. In: Flexible Spacecraft Dynamics, Control and Guidance. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25540-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25540-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25538-5

  • Online ISBN: 978-3-319-25540-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics