International Conference on Principles and Practice of Multi-Agent Systems

PRIMA 2015: PRIMA 2015: Principles and Practice of Multi-Agent Systems pp 594-602 | Cite as

Introducing Preference-Based Argumentation to Inconsistent Ontological Knowledge Bases

  • Madalina Croitoru
  • Rallou Thomopoulos
  • Srdjan Vesic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9387)


Handling inconsistency is an inherent part of decision making in traditional agri-food chains – due to the various concerns involved. In order to explain the source of inconsistency and represent the existing conflicts in the ontological knowledge base, argumentation theory can be used. However, the current state of art methodology does not allow to take into account the level of significance of the knowledge expressed by the various ontological knowledge sources. We propose to use preferences in order to model those differences between formulas and evaluate our proposal practically by implementing it within the INRA platform and showing a use case using this formalism in a bread making decision support system.


Phytic Acid Description Logic Pareto Optimal Argumentation Framework Attack Relation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amgoud, L., Vesic, S.: Rich preference-based argumentation frameworks. International Journal of Approximate Reasoning 55, 585–606 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arioua, A., Tamani, N., Croitoru, M.: On conceptual graphs and explanation of query answering under inconsistency. In: Hernandez, N., Jäschke, R., Croitoru, M. (eds.) ICCS 2014. LNCS, vol. 8577, pp. 51–64. Springer, Heidelberg (2014) Google Scholar
  3. 3.
    Arioua, A., Tamani, N., Croitoru, M., Buche, P.: Query failure explanation in inconsistent knowledge bases using argumentation. In: Proceedings of the Fifth International Conference on Computational Models of Argument (COMMA 2014), pp. 101–108 (2014)Google Scholar
  4. 4.
    Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of the 19th International Joint Conferences on Artificial Intelligence (IJCAI 2005), pp. 364–369 (2005)Google Scholar
  5. 5.
    Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsistent knowledge bases. In: Proceedings of the 9th Conference on Uncertainty in Artificial intelligence (UAI 1993), pp. 411–419 (1993)Google Scholar
  6. 6.
    Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of inconsistent knowledge bases: a comparative study part 2: the prioritized case. In: Logic at Work: Essays Dedicated to the Memory of Helen Rasiowa, vol. 24, pp. 437–511. Physica-Verlag (1999)Google Scholar
  7. 7.
    Bienvenu, M.: On the complexity of consistent query answering in the presence of simple ontologies. In: Proceedings of the 26th Conference on Artificial Intelligence (AAAI 2012), pp. 705–711 (2012)Google Scholar
  8. 8.
    Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description logic knowledge bases under preferred repair semantics. In: Proceedings of the 28th Conference on Artificial Intelligence (AAAI 2014), pp. 996–1002 (2014)Google Scholar
  9. 9.
    Binas, A., McIlraith, S.A.: Peer-to-peer query answering with inconsistent knowledge. In: Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning (KR 2008), pp. 329–339 (2008)Google Scholar
  10. 10.
    Black, E., Hunter, A., Pan, J.Z.: An argument-based approach to using multiple ontologies. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 68–79. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  11. 11.
    Brewka, G.: Preferred subtheories: an extended logical framework for default reasoning. In:1 Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI 1989), pp. 1043–1048 (1989)Google Scholar
  12. 12.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-lite family. Journal of Automated Reasoning 39(3), 385–429 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial Intelligence Journal 171(5–6), 286–310 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Croitoru, M., Thomopoulos, R., Vesic, S.: Introducing preference-based argumentation to inconsistent ontological knowledge bases. CNRS - University of Artois, Technical report, CRIL (2015)Google Scholar
  15. 15.
    Croitoru, M., Vesic, S.: What can argumentation do for inconsistent ontology query answering? In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS, vol. 8078, pp. 15–29. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence Journal 77, 321–357 (1995)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kaci, S.: Refined preference-based argumentation frameworks. In: Proceedings of the Third International Conference on Computational Models of Argument (COMMA 2010), pp. 299–310 (2010)Google Scholar
  18. 18.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  19. 19.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the 21st Symposium on Principles of Database Systems (PODS 2002), pp. 233–246 (2002)Google Scholar
  20. 20.
    Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in Datalog+/- ontologies. In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012), pp. 558–563 (2012)Google Scholar
  21. 21.
    Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Complexity of inconsistency-tolerant query answering in Datalog+/-. In: Informal Proceedings of the 26th International Workshop on Description Logics, pp. 791–803 (2013)Google Scholar
  22. 22.
    Modgil, S., Prakken, H.: A general account of argumentation and preferences. Artificial Intelligence Journal 195, 361–397 (2013)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Staworko, S., Chomicki, J., Marcinkowski, J.: Preference-driven querying of inconsistent relational databases. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Fischer, F., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 318–335. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  24. 24.
    Tamani, N., Croitoru, M., Buche, P.: Conflicting viewpoint relational database querying: An argumentation approach. In: Proceedings of the 13th International Conference on Autonomous Agents and Multi-agent Systems (AAMAS 2014), pp. 1553–1554 (2014)Google Scholar
  25. 25.
    Thomopoulos, R., Croitoru, M., Tamani, N.: Decision support for agri-food chains: a reverse engineering argumentation-based approach. Ecological Informatics (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Madalina Croitoru
    • 1
  • Rallou Thomopoulos
    • 2
  • Srdjan Vesic
    • 3
  1. 1.INRIA, LIRMMUniversity Montpellier 2MontpellierFrance
  2. 2.INRA GraphIKMontpellierFrance
  3. 3.CRILCNRS - University of ArtoisLensFrance

Personalised recommendations