International Conference on Principles and Practice of Multi-Agent Systems

PRIMA 2015: PRIMA 2015: Principles and Practice of Multi-Agent Systems pp 20-35 | Cite as

Managing Autonomous Mobility on Demand Systems for Better Passenger Experience

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9387)

Abstract

Autonomous mobility on demand systems, though still in their infancy, have very promising prospects in providing urban population with sustainable and safe personal mobility in the near future. While much research has been conducted on both autonomous vehicles and mobility on demand systems, to the best of our knowledge, this is the first work that shows how to manage autonomous mobility on demand systems for better passenger experience. We introduce the Expand and Target algorithm which can be easily integrated with three different scheduling strategies for dispatching autonomous vehicles. We implement an agent-based simulation platform and empirically evaluate the proposed approaches with the New York City taxi data. Experimental results demonstrate that the algorithm significantly improve passengers’ experience by reducing the average passenger waiting time by up to \(29.82\%\) and increasing the trip success rate by up to \(7.65\%\).

Keywords

Autonomous vehicles Mobility on demand AMOD Systems Agent-based simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agussurja, L., Lau, H.C.: Toward large-scale agent guidance in an urban taxi service (2012). arXiv preprint arXiv:1210.4849
  2. 2.
    Alshamsi, A., Abdallah, S., Rahwan, I.: Multiagent self-organization for a taxi dispatch system. In: 8th International Conference on Autonomous Agents and Multiagent Systems, pp. 21–28 (2009)Google Scholar
  3. 3.
    Anderson, J.M., Nidhi, K., Stanley, K.D., Sorensen, P., Samaras, C., Oluwatola, O.A.: Autonomous vehicle technology: A guide for policymakers. Rand Corporation (2014)Google Scholar
  4. 4.
    Beirão, G., Cabral, J.S.: Understanding attitudes towards public transport and private car: A qualitative study. Transport policy 14(6), 478–489 (2007)CrossRefGoogle Scholar
  5. 5.
    Broggi, A., Buzzoni, M., Debattisti, S., Grisleri, P., Laghi, M.C., Medici, P., Versari, P.: Extensive tests of autonomous driving technologies. IEEE Transactions on Intelligent Transportation Systems 14(3), 1403–1415 (2013)CrossRefGoogle Scholar
  6. 6.
    Čertickỳ, M., Jakob, M., Píbil, R.: Analyzing on-demand mobility services by agent-based simulation. Journal of Ubiquitous Systems & Pervasive Networks 6(1), 17–26 (2015)Google Scholar
  7. 7.
    Čertickỳ, M., Jakob, M., Píbil, R., Moler, Z.: Agent-based simulation testbed for on-demand transport services. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, pp. 1671–1672 (2014)Google Scholar
  8. 8.
    Chong, Z., Qin, B., Bandyopadhyay, T., Wongpiromsarn, T., Rebsamen, B., Dai, P., Rankin, E., Ang Jr, M.H.: Autonomy for mobility on demand. In: Intelligent Autonomous Systems 12, pp. 671–682. Springer (2013)Google Scholar
  9. 9.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  10. 10.
    Donovan, B., Work, D.: New york city taxi data 2010–2013 (2014). http://publish.illinois.edu/dbwork/open-data/
  11. 11.
    Downs, A.: Still Stuck in Traffic: Coping with Peak-hour Traffic Congestion. Brookings Institution Press (2005)Google Scholar
  12. 12.
    Gan, J., An, B., Miao, C.: Optimizing efficiency of taxi systems: scaling-up and handling arbitrary constraints. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 523–531 (2015)Google Scholar
  13. 13.
    Glaschenko, A., Ivaschenko, A., Rzevski, G., Skobelev, P.: Multi-agent real time scheduling system for taxi companies. In: 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), pp. 29–36. Budapest, Hungary (2009)Google Scholar
  14. 14.
    Haklay, M., Weber, P.: Openstreetmap: User-generated street maps. IEEE Pervasive Computing 7(4), 12–18 (2008)CrossRefGoogle Scholar
  15. 15.
    Huang, A.S., Moore, D., Antone, M., Olson, E., Teller, S.: Finding multiple lanes in urban road networks with vision and lidar. Autonomous Robots 26(2–3), 103–122 (2009)CrossRefGoogle Scholar
  16. 16.
    Jakob, M., Moler, Z., Komenda, A., Yin, Z., Jiang, A.X., Johnson, M.P., Pěchouček, M., Tambe, M.: Agentpolis: towards a platform for fully agent-based modeling of multi-modal transportation. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 3, pp. 1501–1502 (2012)Google Scholar
  17. 17.
    Lavrinc, D.: BMW builds a self-driving car - that drifts. Wired Magazine (2014)Google Scholar
  18. 18.
    Lozano-Perez, T., Cox, I.J., Wilfong, G.T.: Autonomous robot vehicles. Springer Science & Business Media (2012)Google Scholar
  19. 19.
    Maciejewski, M., Nagel, K.: Simulation and dynamic optimization of taxi services in MATSim. VSP Working Paper (2013)Google Scholar
  20. 20.
    MAPZEN: Mapzen metro extracts: New york City (2015). https://mapzen.com/data/metro-extracts
  21. 21.
    Markoff, J.: Google cars drive themselves, in traffic. New York Times (2010)Google Scholar
  22. 22.
    Mitchell, W.J.: Intelligent cities. UOC Papers 5, 1541–1885 (2007)Google Scholar
  23. 23.
    Mitchell, W.J.: Reinventing the automobile: Personal urban mobility for the 21st century. MIT Press (2010)Google Scholar
  24. 24.
    Moghadam, P., Wijesoma, W.S., Feng, D.J.: Improving path planning and mapping based on stereo vision and lidar. In: Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision, pp. 384–389. IEEE (2008)Google Scholar
  25. 25.
    Ontodia: Pediacities neighborhoods of New York city (2015). http://catalog.opendata.city/dataset/pediacities-nyc-neighborhoods
  26. 26.
    Papadimitratos, P., La Fortelle, A., Evenssen, K., Brignolo, R., Cosenza, S.: Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation. IEEE Communications Magazine 47(11), 84–95 (2009)CrossRefGoogle Scholar
  27. 27.
    Premebida, C., Ludwig, O., Nunes, U.: Lidar and vision-based pedestrian detection system. Journal of Field Robotics 26(9), 696–711 (2009)CrossRefGoogle Scholar
  28. 28.
    Seow, K.T., Dang, N.H., Lee, D.H.: A collaborative multiagent taxi-dispatch system. IEEE Transactions on Automation Science and Engineering 7(3), 607–616 (2010)CrossRefGoogle Scholar
  29. 29.
    Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., Pavone, M.: Toward a systematic approach to the design and evaluation of automated mobility-on-demand systems: a case study in singapore. In: Road Vehicle Automation, pp. 229–245. Springer (2014)Google Scholar
  30. 30.
    Zhang, R., Pavone, M.: Control of robotic mobility-on-demand systems: a queueing-theoretical perspective (2014). arXiv preprint arXiv:1404.4391

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of CaliforniaIrvineUSA

Personalised recommendations